Advertisement

Impact of anthropogenic activities on water quality and plankton communities in the Day River (Red River Delta, Vietnam)

  • Hang Thi Thu Hoang
  • Thi Thuy Duong
  • Kien Trung Nguyen
  • Quynh Thi Phuong Le
  • Minh Thi Nguyet Luu
  • Duc Anh Trinh
  • Anh Hung Le
  • Cuong Tu Ho
  • Kim Dinh Dang
  • Julien Némery
  • Didier Orange
  • Judith Klein
Article

Abstract

Planktons are a major component of food web structure in aquatic ecosystems. Their distribution and community structure are driven by the combination and interactions between physical, chemical, and biological factors within the environment. In the present study, water quality and the community structure of phytoplankton and zooplankton were monthly investigated from January to December 2015 at 11 sampling sites along the gradient course of the Day River (Red River Delta, northern Vietnam). The study demonstrated that the Day River was eutrophic with the average values of total phosphorus concentration 0.17 mg/L, total nitrogen concentration 1.98 mg/L, and Chl a 54 μg/L. Microscopic plankton analysis showed that phytoplankton comprised 87 species belonging to seven groups in which Chlorophyceae, Bacillariophyceae, and Cyanobacteria accounted for the most important constituents of the river’s phytoplankton assemblage. A total 53 zooplankton species belonging to three main groups including Copepoda, Cladocera, and Rotatoria were identified. Plankton biomass values were greatest in rainy season (3002.10-3 cell/L for phytoplankton and 12.573 individuals/m3 for zooplankton). Using principal correspondence and Pearson correlation analyses, it was found that the Day River was divided into three main site groups based on water quality and characteristics of plankton community. Temperature and nutrients (total phosphorus and total nitrogen) are key factors regulating plankton abundance and distribution in the Day River.

Keywords

Water quality Plankton communities Day River Red River Delta Tropical Vietnam 

Notes

Acknowledgments

This work was supported by the NAFOSTED (106NN.99-2014.20 project) and the IFS W/4674-2 project. The authors are grateful for the financial supports from Vietnam’s National Foundation for Science and Technology Development (NAFOSTED), the International Foundation for Science (IFS). The authors thank many individuals for their help in collecting samples in the field. This study was also related to the NUCOWS research project (Nutrients and Contaminants in Waters in Southeast Asia) from the USTH (University of Science and Technology of Hanoi, Hanoi, Vietnam). We are grateful to the anonymous reviewers for their helpful comments and constructive suggestions.

References

  1. American Public Health Association (APHA) (1999) Standard methods for the examination of water and wastewater. 20th Edition, APHA, Washington DC, 1268 p.Google Scholar
  2. Bahnwart, M., Hübener, T., & Schubert, H. (1999). Downstream changes in phytoplankton composition and biomass in a lowland river–lake system (Warnow River, Germany). Hydrobiologia, 391, 99–111.CrossRefGoogle Scholar
  3. Boxshall, G. A., & Halsey, S. H. (2004). An introduction to copepod diversity (Vol. 166, pp. 1–966). London: Ray Society.Google Scholar
  4. Brett, M. T., & Müller-Navarra, D. C. (1997). The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology, 38(3), 483–499.  https://doi.org/10.1046/j.1365-2427.1997.00220.x.CrossRefGoogle Scholar
  5. Bussi, G., Whitehead, P. G., Bowes, M. J., Read, D. S., Prudhomme, C. P., & Dadson, S. J. (2016). Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK). Science of the Total Environment, 572, 1507–1519.  https://doi.org/10.1016/j.scitotenv.2016.02.109.CrossRefGoogle Scholar
  6. Cisneros, K. O., Smit, A. J., Laudien, J., & Schoeman, D. S. (2011). Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure. PLoS One, 6(8), e23724.  https://doi.org/10.1371/journal.pone.0023724.CrossRefGoogle Scholar
  7. Czerniawski, R., & Domagala, J. (2011). Zooplankton communities of two lake outlets in relation to abiotic factors. Open Life Sciences, 5, 240–255.Google Scholar
  8. D’Alelio, D., Montresor, M., Mazzocchi, M.G., Margiotta, F., Sarno, D& d’Alcalà, M.R (2016). Plankton food-webs: to what extent can they be simplified?Advances in Oceanography and Limnology,7, 67–92.Google Scholar
  9. Dang, N.T&HoT.H (2001). Fresh water crustacean. Fauna of Vietnam Vol 5, Scientific and Technical Publishing House, Ha Noi.Google Scholar
  10. Dang, N. T., Thai, T. B., & Pham, V. M. (1980). Taxonomists invertebrate freshwater North Vietnam. Ha Noi: Scientific and technical Publishing House.Google Scholar
  11. Davis, T.W., Berry, D.L., Boyer, G.L & Gobler, C.J. (2009). The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8, 715–725.Google Scholar
  12. De-Domitrovic, Y. Z., Devercelli, M., & Forastier, M. E. (2014). Phytoplankton of the Paraguay and Bermejo rivers. Advances in Limnology, 65, 67–80.  https://doi.org/10.1127/1612-166X/2014/0065-0034.CrossRefGoogle Scholar
  13. Descy, J. P (1987). Phytoplankton composition and dynamics in the nver Meuse (Belgium). Archiv für Hydrobiologie, Supplement, 78, 225–245.Google Scholar
  14. De-Sousa, B. H., Becker, H., & Melo, V. M. M. (2016). Influence of river discharge on phytoplankton structure and nutrient concentrations in four tropical semiarid estuaries. Brazilian Journal of Oceanography, 64, 37–48.Google Scholar
  15. Dirican, S., Haldun, M., & Suleyman, C. (2009). Some physicochemical characteristics and rotifers of Camligoze Dam Lake, Susehri, Sivas, Turkey. Journal of Animal and Veterinary Advances, 8, 715–719.Google Scholar
  16. Do, T. N., Trinh, A. D., & Nishida, K. (2014). Modification of uncertainty analysis in adapted material flow analysis: case study of nitrogen flows in the Day-Nhue River Basin, Vietnam. Resources, Conservation and Recycling, 88, 67–75.  https://doi.org/10.1016/j.resconrec.2014.04.006.CrossRefGoogle Scholar
  17. Duong. (1996). Taxonomy of cyanobacteria of Vietnam. Hanoi: Agriculture Publishing House.Google Scholar
  18. Duong, D. T., & Vo, H. (1997). Freshwater algae of Vietnam. Oder: Chlorococcales. Hanoi: Agriculture Publishing House 503p.Google Scholar
  19. Duong, T. T., Coste, M., Feurtet-Mazel, A., Dang, D. K., Gold, C., Park, Y. S., & Boudou, A. (2006). Impact of urban pollution from the Hanoi area on benthic diatom communities collected from the Red, Nhue and Tolich rivers (Vietnam). Hydrobiologia, 56, 201–216.CrossRefGoogle Scholar
  20. Duong, T. T., Coste, M., Feurtet-Mazel, A., Dang, D. K., Ho, T. C., & Le, T. P. Q. (2012). Responses and structural recovery of periphytic diatom communities after short-term disturbance in some rivers (Hanoi, Vietnam). Journal of Applied Phycology, 24(5), 1053–1065.  https://doi.org/10.1007/s10811-011-9733-9.CrossRefGoogle Scholar
  21. Ezekiel, E. N., Ogamba, E. N., & Abowei, J. F. N. (2011). The distribution and seasonality of phytoplankton in Sombreiro River, Niger Delta, Nigeria. Asian Journal of Agricultural Science, 3, 192–199.Google Scholar
  22. Falconer, I. R. (1996). Potential impact on human health of toxic cyanobacteria. Phycologia, 35(6S), 6–11.  https://doi.org/10.2216/i0031-8884-35-6S-6.1.CrossRefGoogle Scholar
  23. Fetahia, T., Mengistoua, S., & Schagerl, M. (2011). Zooplankton community structure and ecology of the tropical-highland Lake Hayq Ethiopia. Limnologica, 41(4), 389–397.  https://doi.org/10.1016/j.limno.2011.06.002.CrossRefGoogle Scholar
  24. Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 28, 237–240.CrossRefGoogle Scholar
  25. Glibert, P. M. (2012). Ecological stoichiometry and its implications for aquatic ecosystem sustainability. Current Opinion in Environmental Sustainability, 4(3), 272–277.  https://doi.org/10.1016/j.cosust.2012.05.009.CrossRefGoogle Scholar
  26. Góme, N., & Bauer, D. E. (1998). Phytoplankton from the southern coastal fringe of the Río de la Plata (Buenos Aires, Argentina). Hydrobiologia, 380(1/3), 1–8.  https://doi.org/10.1023/A:1003133106904.CrossRefGoogle Scholar
  27. Huang, L., Jian, W., Song, X., Huang, X., Liu, S., Qian, P., Yin, K., & Wu, M. (2004). Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Marine Pollution Bulletin, 49(7-8), 588–596.  https://doi.org/10.1016/j.marpolbul.2004.03.015.CrossRefGoogle Scholar
  28. Joung, S. H., Oh, H. M., Ko, S. R & Ahn, C. Y. (2011). Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful, 10, 188–193.Google Scholar
  29. Ikhuoriah, S. O., Oronsaye, C. G., & Adebanjo, I. A. (2015). Zooplankton communities of the river Ossiomo, Ologbo, Niger delta, Nigeria. Animal Research International, 12, 2249–2259.Google Scholar
  30. Isbell, F., Reich, P. B., Tilman, D., Hobbie, S. E., Polasky, S., & Binder, S. (2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences, 110(29), 11911–11916.  https://doi.org/10.1073/pnas.1310880110.CrossRefGoogle Scholar
  31. Jin, L., Wu, H., & Chen, M. (2011). Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica, 41, 48–56.CrossRefGoogle Scholar
  32. Karlson, B., Cusack, C., & Bresnan, E.(2010). Microscopic and molecular methods for quantitative phytoplankton analysis. IOC Manuals and Guides (vol 55, pp. 114). Paris: UNESCO.Google Scholar
  33. Komárek, J., & Anagnostidis, K. (1989). Modern approach to the classification system of Cyanophytes 4-Nostocales. Archiv fur Hydrobiologie – Supplement, 82, 247–345.Google Scholar
  34. Komárek, J., & Anagnostidis, K. (1999). Cyanoprokaryota. 1. Chroococcales. In H. Ettl, G. Gärtner, H. Heynig, D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa 19/1 (p. 548). Jena: Fischer Ver lag.Google Scholar
  35. Komárek, J., & Anagnostidis, K. (2005). Cyanoprokaryota -2. Teil/2nd part: Oscillatoriales. In B. Büdel, L. Krienitz, G. Gärtner, & M. Schagerl (Eds.), Süßwasserflora von Mitteleuropa 19/2 (p. 759). Heidelberg: Elsevier/Spektrum.Google Scholar
  36. Kotut, K., Ballot, A., Wiegand, C., & Krienitz, L. (2010). Toxic cyanobacteria at Nakuru sewage oxidation ponds: a potential threat to wildlife. Limnologica, 40(1), 47–53.  https://doi.org/10.1016/j.limno.2009.01.003.CrossRefGoogle Scholar
  37. Krammer, K.,&Lange-Betarlot, H. (1986–1991). Bacillariophyceae. 1.Teil: Naviculaceae. 876 p; 2. Teil : Bacillariaceae, Epithemiaceae, Surirellaceae, 596 p; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, 576 p; 4. Teil : Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. 437 p. In: H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer, (Eds.), Süßwasserflora von Mitteleuropa. Stuttgart: Gustav Fischer Verlag, 2485p.Google Scholar
  38. Kshirsagar, A. D., Ahire, M. L., & Gunale, V. R. (2012). Phytoplankton diversity related to pollution from Mula River at Pune City. Terrestrial & Aquatic Environmental Toxicology, 6, 136–142.Google Scholar
  39. Kutikova, L.A. (1970). Kolovratki Fauna SSSR. In Fauna USSR, (vol. 104, p. 744). Leningrad: Akademia Nauk.Google Scholar
  40. Lancelot, C., & Muylaert, K. (2011). Trends in estuarine phytoplankton ecology. In E. Wolanski & D. Mclusky (Eds.), Treatise on estuarine and coastal science (pp. 5–15). Waltham: Academic Press.  https://doi.org/10.1016/B978-0-12-374711-2.00703-8.CrossRefGoogle Scholar
  41. Lang, K. (1948). Monographie der harpacticiden, H. Ohlsson, Lund. 2 vols, 1682p.Google Scholar
  42. Li, Q. P., Dong, Y., & Wang, Y. (2016). Phytoplankton dynamics driven by vertical nutrient fluxes during the spring inter-monsoon period in the northeastern South China Sea. Biogeosciences, 13(2), 455–466.  https://doi.org/10.5194/bg-13-455-2016.CrossRefGoogle Scholar
  43. Litchman, E., Ohman, M. D., & Kiørboe, T. (2013). Trait-based approaches to zooplankton communities. Journal PlanktonRessearch, 35(3), 473–484.  https://doi.org/10.1093/plankt/fbt019.Google Scholar
  44. Lucas, L., Cloern, J. E., Thompson, J. K., Stacey, M. T., & Koseff, J. R. (2016). Bivalve grazing can shape phytoplankton communities. Frontiers in Marine Science, 3, 14.  https://doi.org/10.3389/fmars.2016.00014.CrossRefGoogle Scholar
  45. Lung’ayia, H. B. O., M’harzi, A., Tackx, M., Gichuki, J., & Symoens, J. J. (2000). Phytoplankton community structure and environment in the Kenyan waters of Lake Victoria. Freshwater Biology, 43(4), 529–543.  https://doi.org/10.1046/j.1365-2427.2000.t01-1-00525.x.CrossRefGoogle Scholar
  46. Luu, T.N.M. (2010). Water quality and nutrient transfer in the continuum from the upstream Red River Basin to the Delta: budget and modelling. PhD Thesis of Pierre and Marie Curie University and Vietnam Academy of Science and Technology, 199 p.Google Scholar
  47. Luu, T. N. M., Garnier, J., Billen, G., Orange, D., Nemery, J., Le, T. P. Q., Tran, H. T., & Le, L. A. (2010). Hydrological regime and water budget of the Red River Delta (Northern Vietnam). Journal of Asian Earth Sciences, 37(3), 219–228.  https://doi.org/10.1016/j.jseaes.2009.08.004.CrossRefGoogle Scholar
  48. Luu, T. N., Garnier, G., Billen, G., Le, T. P. Q., Nemery, J., Orange, D., & Le, L. A. (2012). N, P, Si budgets for the Red River Delta (northern Vietnam): how the delta affects river nutrient delivery to the sea. Biogeochemistry, 107(1-3), 241–259.  https://doi.org/10.1007/s10533-010-9549-8.CrossRefGoogle Scholar
  49. Mariania, O., Andersen, K. H., Visser, W. A., Barton, A. D., & Kiørboe, K. (2013). Control of plankton seasonal succession by adaptive grazing. Limnology and Oceanography, 58(1), 173–184.  https://doi.org/10.4319/lo.2013.58.1.0173.CrossRefGoogle Scholar
  50. Marques, S.C., Azeiteiro, U.M., Leandro, S.M., Queiroga, H., Primo, A.L., Martinho, F., Viegas, I & Pardal, M. A (2008). Predicting zooplankton response to environmental changes in a temperate estuarine ecosystem. Marine Biology, 155, 531–541.Google Scholar
  51. Matos, J. B., Sodré, D. K. L., da Costa, K. G., Pereira, L. C. C., & da Costa, R. M. (2011). Spatial and temporal variation in the composition and biomass of phytoplankton in an Amazonian estuary. Journal of Coastal Research, 64, 1525–1529.Google Scholar
  52. MEA. (2003). Millenium ecosystem assessment: ecosystems and human well-being (Vol. 200, 266p). Washington, DC: Island Press.Google Scholar
  53. Mitrovic, S. M., Westhorpe, D. P., Kobayyashi, T., Baldwin, D. S., Ryan, D., & Hitchook, J. N. (2014). Short-term changes in zooplankton density and community structure in response to different sources of dissolved organic carbon in an unconstrained lowland river: evidence for food web support. Journal of Plankton Ressearch, 36(6), 1488–1500.  https://doi.org/10.1093/plankt/fbu072.CrossRefGoogle Scholar
  54. Neto, A. J. G., da Silva, L. C., Saggio, A. A., & Rocha, O. (2014). Zooplankton communities as eutrophication bioindicators in tropical reservoirs. Biota Neotropica, 14, e20140018.Google Scholar
  55. Nghiem, X. A., Le, T. P. Q., Vu, H. H., Luu, T. N. M., & Duong, T. T. (2010). The wastewater quality from several industrial production branches and traditional production villages in the Day-Nhue river basin, North Vietnam. VNU Journal Science Earth Science, 26, 1–7.Google Scholar
  56. Ngodhe, S. O., Raburu, P. O., Arara, B. K., Orwa, P. O., & Otieno, A. A. (2013). Spatio-temporal variations in phytoplankton community structure in small water bodies within Lake Victoria basin, Kenya. African Journal of Environmental Science and Technology, 7, 862–873.Google Scholar
  57. Nguyen, V.C. (2005). Final Project Report. Establishment of future plan for environmental protection of the Day-Nhue watershed. Institute of Geography. Vietnam Academy of Science and Technology, 400 p.Google Scholar
  58. Nweze, N. O. (2006). Seasonal variations in phytoplankton in Ogelube Lake, a small natural West African Lake. Lakes and Reservoirs: Research and Management, 11(2), 63–72.  https://doi.org/10.1111/j.1440-1770.2006.00292.x.CrossRefGoogle Scholar
  59. O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A., & Bruno, J. F. (2009). Warming and resource availability shift food web structure and metabolism. PLoS Biology, 7(8), e1000178.  https://doi.org/10.1371/journal.pbio.1000178.CrossRefGoogle Scholar
  60. O’Farrel, I., & Izaguirre, I. (1994). Phytoplankton ecology and limnology of the river Uruguay Lower Basin (Argentina). Archiv für Hydrobiologie, l1, 155–179.Google Scholar
  61. OECD. (1982). Eutrophication of waters—monitoring, assessment and control. Paris: Organization for Economic Cooperation and Development.Google Scholar
  62. Orange, D., Luu, T. N. M., Le, T. P. Q., Tran, H. T., Nemery, J., Le, L. A., & Billen, G. (2013). Water balance and nutrient delivery in a densely populated delta for a future sustainable environment. (Vol. 358, pp. 196–202). England: Coll. Red Books, International Association of Hydrological Sciences.Google Scholar
  63. Paczkowska, J., Rowe, O. F., Schlüter, L., Legrand, C., Karlson, B., & Andersson, A. (2017). Allochthonous matter: an important factor shaping the phytoplankton community in the Baltic Sea. Journal of Plankton Research, 39(1), 23–34.  https://doi.org/10.1093/plankt/fbw081.CrossRefGoogle Scholar
  64. Padmanabha, B., & Belaghi, S. L. (2008). Ostracods as indicators of pollution in Lake Mysore. Journal of Environmental Biology, 29(3), 415–418.Google Scholar
  65. Paerl, H.W. & Huisman, J. (2008). Blooms Like It Hot. Science, 320, 57–58.Google Scholar
  66. Paerl, H. W., Joyner, J. J., Joyner, A. R., Arthur, K., Paul, V. J., O’Neil, J. M., & Heil, C. A. (2008). Co-occurrence of dinoflagellate and cyanobacterial harmful algal blooms in southwest Florida coastal waters: a case for dual nutrient (N and P) input controls. The Marine Ecology Progress Series, 371, 143–153.  https://doi.org/10.3354/meps07681.CrossRefGoogle Scholar
  67. Paerl, H.W., Rossignol, K.L., Hall N.S., Peierls, B.L & Wetz , M.S (2010). Phytoplankton community indicators of short- and long-term ecological change in the anthropogenically and climatically impacted Neuse River Estuary, North Carolina, USA. Estuaries and Coasts, 33, 485–497.Google Scholar
  68. Paerl, H. W., Hall, N. S., Peierls, B. L., & Rossignol, K. (2014). Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuaries and Coasts, 37(2), 243–258.  https://doi.org/10.1007/s12237-014-9773-x.CrossRefGoogle Scholar
  69. Pham, T. M. H., Suthipong, S., & Kim, K. D. (2010). Anthropogenic influence on surface water quality of the Nhue and Day sub-river systems in Vietnam. Environmental Geochemistry and Health, 32, 227–236.CrossRefGoogle Scholar
  70. Pham, H. G., Harada, H., Fujii, S., Nguyen, P. H. L., Huynh, T. H., Pham, N. A., & Tanaka, S. (2015). Transition of fertilizer application and agricultural pollution loads: a case study in the Nhue-Day River basin. Water Science and Technology, 72, 1072–1081.CrossRefGoogle Scholar
  71. Phan, V.M., & Nguyen, D.T. (2013). Using zooplankton, phytoplankton and zoobenthod as bio-indicators for assessment of the water quality in confluence of Nhue Day rivers in Hanam province. National Conference on Ecology and Biology resource 5th: 1463–1467.Google Scholar
  72. Pick, F. R., & Lean, D. R. S (1987). The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperate lakes. New Zealand Journal of Marine and Freshwater Research, 21, 425–434.Google Scholar
  73. Reddy, R.Y. (1994). Copepoda: Calanoida: Diaptomidae. Key to the genera Heliodiaptomus, Allodiaptomus, Neodiaptomus, Phyllodiaptomus, Eodiaptomus, Arctodiaptomus and Sinodiaptomus. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 5. In H. J. F. Dumont (Ed.), The Hague (p. 221). the Netherlands: SPB Academic Publishing.Google Scholar
  74. Reynolds, C. S. (2006). The ecology of phytoplankton. Cambridge: Cambridge University Press.  https://doi.org/10.1017/CBO9780511542145.CrossRefGoogle Scholar
  75. Reynolds, C. S., & Descy, J. P. (1996). The production, biomass and structure of phytoplankton in large rivers. Archiv für Hydrobiologie, 113, 161–187.Google Scholar
  76. Rieman, B.E., Isaak, D.J (2010). Climate change, aquatic ecosystems, and fishes in the Rocky Mountain West: implications and alternatives for management. Gen. Tech. Rep. RMRS-GTR-250. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 46p.Google Scholar
  77. Sabo, E., Roy, D., Hamilton, P.B., Hehanussa, E.H., McNeely, R& Haffner, G.D (2008). The plankton community of Lake Matano: factors regulating plankton composition and relative abundance in an ancient, tropical lake of Indonesia. Hydrobiologia, 615, 225–235, 1, DOI:  https://doi.org/10.1007/s10750-008-9560-4.
  78. Sailley, S. F., Polimene, L., & Mitra, A. (2015). Impact of zooplankton food selectivity on plankton dynamics and nutrient cycling. Journal of Plankton Research, 37(3), 519–529.  https://doi.org/10.1093/plankt/fbv020.CrossRefGoogle Scholar
  79. Salmaso, N. (2000). Factors affecting the seasonality and distribution of cyanobacteria and chlorophytes: a case study from the large lakes south of the alps, with special reference to Lake Garda. Hydrobiologia, 438(1/3), 43–63.  https://doi.org/10.1023/A:1004157828049.CrossRefGoogle Scholar
  80. Seitz, R. D., Dauer, D. M., & Llansó, R. J. (2009). Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. Journal of Experimental Marine Biology and Ecology, 381, S4–S12.  https://doi.org/10.1016/j.jembe.2009.07.004.CrossRefGoogle Scholar
  81. Shen, C. J. (1979). Freshwater Copepoda. Fauna Sinica, Crustacea (450p). Beijing: Science Press.Google Scholar
  82. Sekadende, B. C., Lyimo, T. J., & Kurmayer, R. (2005) Microcystin production by cyanobacteria in the Mwanza Gulf (Lake Victoria, Tanzania). Hydrobiologia ,543, 299–304.Google Scholar
  83. Suikkanen, S., Pulina, S., Engström-Öst, J., Lehtiniemi, M., Lehtinen, S & Brutemark, A. (2013). Climate change and eutrophication induced shifts in Northern summer Plankton communities. PLoS ONE, 8(6): e66475.  https://doi.org/10.1371/journal.pone.0066475.
  84. Tackx, M. L. M., Paum, N. D., Mieghem, R. V., Azemar, F., Hamouti, A., Damme, S. V., Fiers, N., & Meire, P. (2004). Zooplankton in the Schelde estuary, Belgium and The Netherlands spatial and temporal patterns. Journal of Plankton Research, 26(2), 133–141.  https://doi.org/10.1093/plankt/fbh016.CrossRefGoogle Scholar
  85. Tavernini, S., Pierobon, E., & Viaroli, P. (2011). Physical factors and dissolved reactive silica affect phytoplankton community structure and dynamics in a lowland eutrophic river (Po river, Italy). Hydrobiologia, 669(1), 213–225.  https://doi.org/10.1007/s10750-011-0688-2.CrossRefGoogle Scholar
  86. Trinh, A.D (2003) Etude de la qualité des eaux d’un hydrosystème fluvial urbain autour de Hanoi (Vietnam) suivi experimental et modélisation. Thèse Université Grenoble 1, France and Vietnam Academy of Science and Technology (VAST), 265 p.Google Scholar
  87. Trinh, A. D., Meysman, F., Rochelle-Newall, E., & Bonnet, M. P. (2012). Quantification of sediment-water interactions in a polluted tropical river through biogeochemical modeling. Global Biogeochemical Cycles, 26, GB3010.  https://doi.org/10.1029/2010GB003963.CrossRefGoogle Scholar
  88. Trinh, A. D., Vu, D. L., & Ta, T. T. (2013). Partition of heavy metals in a tropical river system impacted by municipal waste. Environmental Monitoring Assessment, 185, 1907–1925.CrossRefGoogle Scholar
  89. Van den Hoek, C., Mann, D., & Jahns, H. M. (1996). Algae‬: an introduction to phycology‬. Cambridge: Cambridge University Press 637p.Google Scholar
  90. Vitousek, P., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2012). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5–15.CrossRefGoogle Scholar
  91. Vu, T. N., Duong, T. T., Le, H. A., Hoang, T. K., Pham, T. N., & Tran, V. T. (2012). Variation in phytoplankton density and occurrence of toxic cyanobacteria in the lake Ho Tay. Journal of Science and Technology, 28, 256–263.Google Scholar
  92. Wang, J. J. (1961). Fauna of freshwater Rotifera of China (288p). Beijing: Science press of China.Google Scholar
  93. Wehr, J. D., & Descy, J. P. (1998). Use of phytoplankton in large river management. Journal of Phycology, 34(5), 741–749.  https://doi.org/10.1046/j.1529-8817.1998.340741.x.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hang Thi Thu Hoang
    • 1
    • 2
  • Thi Thuy Duong
    • 1
    • 2
    • 3
  • Kien Trung Nguyen
    • 1
  • Quynh Thi Phuong Le
    • 4
  • Minh Thi Nguyet Luu
    • 5
  • Duc Anh Trinh
    • 6
  • Anh Hung Le
    • 7
  • Cuong Tu Ho
    • 1
  • Kim Dinh Dang
    • 1
  • Julien Némery
    • 8
    • 9
  • Didier Orange
    • 3
    • 10
  • Judith Klein
    • 11
  1. 1.Institute of Environmental TechnologyVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Graduate University of Science and TechnologyVietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.University of Science and Technology of HanoiVietnam Academy of Science and TechnologyHanoiVietnam
  4. 4.Institute of Natural Products ChemistryVietnam Academy of Science and TechnologyHanoiVietnam
  5. 5.Institute of ChemistryVietnam Academy of Science and TechnologyHanoiVietnam
  6. 6.Department of International CooperationVietnam Atomic Energy InstituteHanoiVietnam
  7. 7.Institute of Ecology and Biological ResourcesVietnam Academy of Science and TechnologyHanoiVietnam
  8. 8.Institute of Engineering Univ. Grenoble AlpesGrenobleFrance
  9. 9.CARE-HCMUTHo Chi Minh CityVietnam
  10. 10.Eco & Sols, IRD, CIRAD, INRA, Montpellier SupAgro, Univ MontpellierMontpellierFrance
  11. 11.MARBEC, IRD, Ifremer, Univ Montpellier, CNRSMontpellierFrance

Personalised recommendations