Advertisement

Nitrogen distribution in a tropical urbanized estuarine system in northeastern Brazil

  • Celimarcos Bezerra dos Santos
  • Maria Aparecida Macêdo Silva
  • Marcelo F. Landim de Souza
  • Daniela Mariano Lopes da SilvaEmail author
Article

Abstract

Nitrogen enters estuaries mostly through fluvial discharge and tide, although anthropogenic sources are known to influence the amount of this element in these aquatic ecosystems. Thus, the objective of this work was to verify which river (Cachoeira, Fundão, and/or Santana) exerts greater influence on the distribution of dissolved N forms (Dissolved Organic Nitrogen and Dissolved Inorganic Nitrogen = NH3/NH4+, NO2, and NO3) along a tropical urbanized estuarine system in northeastern Brazil. The studies estuarine system lies with in urban municipality, and the upper portion of the Cachoeira river estuary receives the treated effluent from this municipality through a sewage treatment station and untreated effluents from nearby villages. The selected sampling stations were located near the outfall of the rivers in the estuaries to the treatment plant and the villages. Of all the nitrogen forms, dissolved organic nitrogen (DON) prevailed in the estuarine system, followed by nitrate (NO3) as the main inorganic form. The highest concentrations were recorded in the fluvial portion and upper estuary of Cachoeira river in the dry season. Based on the N concentrations found in the estuarine system, Cachoeira river has the greatest anthropogenic influence due to the amount of untreated effluents from the villages and treated effluents from the sewage treatment plant (STP) in the upper portion of the estuary.

Keywords

Nitrogen Domestic effluents Sewage treatment Tropical estuary 

Notes

Acknowledgements

We would like to thank the Research Support Foundation of the State of Bahia - FAPESB (PET 0025/2012) and the State University of Santa Cruz – UESC (0220.1100.1266) for funding this research and for awarding the scholarship BOL0322/2014, and the coordination of the PPGSAT for overseeing research. We also thank to Cipriana Leme for the English revision of this manuscript.

References

  1. Aelion, C. M., & Warttinger, U. (2009). Low sulfide concentrations affect nitrate transformations in freshwater and saline coastal retention pond sediments. Soil Biology & Biochemistry, 41(4), 735–741.  https://doi.org/10.1016/j.soilbio.2009.01.015.CrossRefGoogle Scholar
  2. Alves, C. P., & Souza, M. F. L. (2005). Hydrochemistry of two small estuaries: Cururupe and Acuípe Rivers (Ilhéus, BA, Brazil). Acta Limnologica Brasiliensia, 17, 409–418.Google Scholar
  3. BAHIA. (2001). Programa de Recuperação das Bacias dos Rios Cachoeira e Almada. Diagnóstico Regional. Caracterização Hidrológica. Ilhéus, SRH/UESC, v. 1, Tomo IV.Google Scholar
  4. Barroso, H. S., Becker, H., & Melo, V. M. M. (2016). Influence of river discharge on phytoplankton structure and nutrient concentrations in four tropical semiarid estuaries. Brazilian Journal of Oceanograpy, 64(1), 37–48.  https://doi.org/10.1590/S1679-87592016101406401.CrossRefGoogle Scholar
  5. Berman, T., & Bronk, D. A. (2003). Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquatic Microbial Ecology, 31, 279–305.  https://doi.org/10.3354/ame031279.CrossRefGoogle Scholar
  6. Bernhard, A.E. & Bollmann, A. (2010) Estuarine nitrifiers: New players, patterns and processes. Estuarine, Coastal and Shelf Science, 88(1):1–11Google Scholar
  7. Brandini, N., Rodrigues, A. P. C., Abreu, I. M., Junior, L. C. C., Knoopers, B. A., & Machado, W. (2016). Nutrient behavior in a highly eutrophicated tropical estuarine system. Acta Limnologica Brasiliensia, 28(0).  https://doi.org/10.1590/S2179-975X3416.
  8. Brodie, J. E., Devlin, M., & Haynes, D. (2011). Assessment of the eutrophication status of the Great Barrier Reef lagoon (Australia). Biogeochemistry, 106(2), 281–302.  https://doi.org/10.1007/s10533-010-9542-2.CrossRefGoogle Scholar
  9. Canton, M., Anschutz, P., Poirier, D., Chassagne, R., Deborde, J., & Savoye, N. (2012). The buffering capacity of a small estuary on nutrient fluxes originating from its catchment (Leyre estuary, SW France). Estuarine, Coastal and Shelf Science, 99, 171–181.  https://doi.org/10.1016/j.ecss.2011.12.030.CrossRefGoogle Scholar
  10. Conceição, L.P. (2016). Assembleia de flagelados nanoplanctônicos em um sistema estuarino tropical urbanizado. State University of Santa Cruz (Master’s thesis). http://nbcgib.uesc.br/ppgsat/files/Lorena_Pedreira_Conceio.pdf. Accessed June 9 Dec 2017.
  11. Devlin, M. J., McKinna, L. W., Álvarez-Romero, J. G., Petus, C., Abott, B., Harkness, P., & Brodie, J. (2012). Mapping the pollutants in surface riverine flood plume waters in the Great Barrier Reef, Australia. Marine Pollution Bulletin, 65(4-9), 224–235.  https://doi.org/10.1016/j.marpolbul.2012.03.001.CrossRefGoogle Scholar
  12. Elliot, M., & Mclusky. (2002). The need for definitions in understanding estuaries. Estuarine, Coastal and Shelf Science, 55(6), 815–827.  https://doi.org/10.1006/ecss.2002.1031.CrossRefGoogle Scholar
  13. Eyre, B. D., & Balls, P. (1999). A comparative study of nutriente behavior along the salinity gradient of tropical and temperate estuaries. Estuaries, 22(2), 313–326.  https://doi.org/10.2307/1352987.CrossRefGoogle Scholar
  14. Falco, S., Niencheski, L. F., Rodilia, M., Romero, I., Río, J. G. L. D., Sierra, J. P., & Mosso, C. (2010). Nutrient flux and budget in the Ebro estuary. Estuarine, Coastal and Shelf Science, 87(1), 92–102.  https://doi.org/10.1016/j.ecss.2009.12.020.CrossRefGoogle Scholar
  15. Filho, F. J. P., Marins, R. V., & Lacerda, L. D. (2015). Natural and anthropogenic emissions of N and P to the Parnaíba River Delta in NE Brazil. Estuarine, Coastal and Shelf Science, 166, 34–44.  https://doi.org/10.1016/j.ecss.2015.03.020.CrossRefGoogle Scholar
  16. Fowler, D., Coyler, M., Sutton, M. A., Cape, N., Reis, S., Sheppard, L. J., Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P., Leach, A., Bowman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson, D., Aman, M., & Voss, M. (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society, 368(1621), 20130164.  https://doi.org/10.1098/rstb.2013.0164.CrossRefGoogle Scholar
  17. Grasshoff, K., Erhardt, M., & Kremiling, K. (1983). Methods of seawater analysis. Weinhein: Verlag chemie.Google Scholar
  18. Gross, E. & Mello, D. L. N. (2013). Clima e solos para a Cultura do Cacau. In D.L.N. Mello & E. Gross (Eds.), Guia de Manejo do Agroecossistema Cacau Cabruca (pp. 14). Ilhéus, Editora. Instituto Cabruca.Google Scholar
  19. Head, P. C. (1985). Pratical estuarine chemistry: A handbook. New York: Cambridge University Press.Google Scholar
  20. Howarth, R. W. (2008). A review of sources and trends globally and regionally. Coastal nitrogen pollution, 8, 14–20.Google Scholar
  21. Howarth, R., Swamey, D., Bille, G., Garnier, J., Hong, B., Humborg, C., Johnes, P., Morth, C. H., & Marino, R. (2012). Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Frontiers Ecology Environment, 10(1), 37–43.  https://doi.org/10.1890/100178.CrossRefGoogle Scholar
  22. Hunter, H. M., & Walton, R. S. (2008). Land-use effects on fluxes of suspended sediment, nitrogen and phosphorus from a river catchment of the Great Barrier Reef, Australia. Journal of Hydrology, 356(1-2), 131–146.  https://doi.org/10.1016/j.jhydrol.2008.04.003.CrossRefGoogle Scholar
  23. Jennerjahn, T. C., & Mitchell, S. T. (2013). Pressures, stresses, shocks and trends in estuarine ecosystems—Na introduction and synthesis. Estuarine, Coastal and Shelf Science, 130, 1–8.  https://doi.org/10.1016/j.ecss.2013.07.008.CrossRefGoogle Scholar
  24. Klumpp, A., Bauer, B. K., Gerstein, C. F., & Menezes, M. (2002). Variation of nutrient and metal concentracion in aquatic macrophytes along the Rio Cachoeira in Bahia (Brazil). Environment International, 165–171.Google Scholar
  25. Koroncai, R., Linker, L., Sweeney, J., & Batiuk, R. (2003). Setting and allocating the Chesapeake Bay nutrient and sediment loads: the collaborative process, technical tools, and innovative approaches. Annapolis, MD: U.S. Environmental Protection Agency, Chesapeake Bay Program Office.Google Scholar
  26. Lee, S. Y. (2016). From blue to black: anthropogenic forcing of carbon and nitrogen influx to mangrove lined estuaries in South of China Sea. Marine Pollution Bulletin, 109(2), 682–690.  https://doi.org/10.1016/j.marpolbul.2016.01.008.CrossRefGoogle Scholar
  27. Lima, M. C., Souza, M. F. L., Eça, G. F., & Silva, M. A. M. (2010). Export and retention of dissolved inorganic nutrients in the Cachoeira River, Ilhéus, Bahia, Brasil. Journal Limnology, 69(01), 138–145.  https://doi.org/10.4081/jlimnol.2010.138.CrossRefGoogle Scholar
  28. Lúcio, M.Z.T.P.Q.L. (2010). Biogeoquímica do rio cachoeira (Bahia, Brasil). M.Sc. Dissertação, Universidade Estadual de Santa Cruz, Brasil. http://nbcgib.uesc.br/ppgsat/files/PPGSAT/Defesas%202010/Maria_Zita_Tabosa_Pinheiro_de_Q_L_Lucio.pdf. Acesso 11 de Dezembro de 2017.
  29. Lucio, M. Z. T. P. Q. L., Santos, S. S., & Silva, D. M. L. (2012). Hydrochemistry of Cachoeira River (Bahia State, Brazil). Acta Limnologica Brasiliensia, 24(2), 181–192.  https://doi.org/10.1590/S2179-975X2012005000037.CrossRefGoogle Scholar
  30. Mazumder D., Saintilan, N., Alderson, B., Hollins, S. (2015) Inputs of anthropogenic nitrogen influence isotopic composition and trophic structure in SE Australian estuaries. Marine Pollution Bulletin, 100(1):217–223Google Scholar
  31. Mello, D.L.N., Araújo, N.G., Matos, T., Oliveira, A.S., Viana, T.G., Gross, E. (2013). Manejo do solo, calagem e adubação orgânica. In: D.L.N. Mello & E. Gross (Eds.), Guia de Manejo do Agroecossistema Cacau Cabruca (pp. 40–52). Ilhéus, Editora. Instituto Cabruca.Google Scholar
  32. Miranda, L. B., Castro, B. M., & Kjerfve, B. (2002). Princípios de oceanografia física de estuários. São Paulo: Edusp.Google Scholar
  33. Nascimento, L. D. (2015). Avaliação espacial e temporal das concentrações de metais potencialmente disponíveis nos sedimentos de fundo do sistema estuarino do Rio Cachoeira, Ilhéus-BA. M.Sc. Dissertação, Universidade Estadual de Santa Cruz, Brasil. http://www.biblioteca.uesc.br/biblioteca/bdtd/201360145D.pdf. Acesso 3 de Agosto de 2016.
  34. Noriega, C. E. D., & Araújo, M. (2011). Nutrient budget (C, N and P) and trophic dynamics of a Brazilian tropical estuary: Barra das Jangadas. Annals of the Brazilian Academy of Science, 83(2), 441–456.  https://doi.org/10.1590/S0001-37652011000200007.CrossRefGoogle Scholar
  35. Pamplona, F. C., Paes, E. T., & Nepomuceno, A. (2013). Nutrient fluctuations in the Quatipuru river: a macrotidal estuarine mangrove system in the Brazilian Amazonian basin. Estuarine, Coastal and Shelf Science, 133, 273–284.  https://doi.org/10.1016/j.ecss.2013.09.010.CrossRefGoogle Scholar
  36. Pereira-Filho, J., Rörig, L.R., Schettini, C.A.F., Soppa, M.A., Santana, B.L. & Santos, J.E. (2010). Spatial changes in the water quality of Itajaí-Açú Fluvial-Estuarine System, Santa Catarina, Brazil. Anais da Academia Brasileira de Ciências, 84(4), 963–982.Google Scholar
  37. Philips, S., Laambroek, H. J., & Vestraete, W. (2002). Origin causes and effects of increased nitrite concentrations in aquatic environments. Re/Views in Environmental Science & Bio/Technology, 1(2), 115–141.  https://doi.org/10.1023/A:1020892826575.CrossRefGoogle Scholar
  38. Prasad, M. B. K., Sapiano, M. R. P., Anderson, C. R., Long, R., & Murtugudde, R. (2010). Long-term variability of nutrients and chlorophyll in the Chesapeake Bay: a retrospective analysis, 1985–2008. Estuaries and Coasts, 33(5), 1128–1143.  https://doi.org/10.1007/s12237-010-9325-y.CrossRefGoogle Scholar
  39. Saeck, E. A., O’brien, K. R., Weber, T. R., & Buford, M. Q. (2013). Changes to chronic nitrogen loading from sewage discharges modify standing stocks of coastal phytoplankton. Marine Pollution Bulletin, 71(1-2), 159–167.  https://doi.org/10.1016/j.marpolbul.2013.03.020.CrossRefGoogle Scholar
  40. Silva, V. A., Moreau, M. S., Moreau, A. M. S., & Rego, N. A. C. (2011). Uso da terra e perda de solo na Bacia Hidrográfica do Rio Colônia. Bahia Revista Brasileira de Engenharia Agrícola e Ambiental, 15(3), 310–315.  https://doi.org/10.1590/S1415-43662011000300013.CrossRefGoogle Scholar
  41. Silva, M. A. M., Eça, G. F., Santos, D. F., Guimarães, A. G., Lima, M. C., & Souza, M. F. L. (2013). Dissolved inorganic nutrients and chlorophyll a in an estuary receiving sewage treatment plant effluents: Cachoeira River estuary (NE Brazil). Environmental Monitoring and Assessment, 185(7), 5387–5399.  https://doi.org/10.1007/s10661-012-2953-x.CrossRefGoogle Scholar
  42. Silva, M. A. M., Souza, M. F. L., & Abreu, P. C. (2015a). Spatial and temporal variations of dissolved inorganic nutrients, and chlorophyll-a in a tropical estuary in northeastern Brazil: dynamics of nutrient removal. Brazilian Journal of Oceanography, 63(1), 1–15.  https://doi.org/10.1590/S1679-87592015064506301.CrossRefGoogle Scholar
  43. Silva, D. M. L., Souza, M. F. L., Moraes, M. E. B., Silva, F. S., & Strenzel, G. M. (2015b). Land use effects on nutrient concentration in a small watershed in northeast Brazil. Brazilian Journal of Aquatic Science and Technology, 19(5), 102–111.Google Scholar
  44. Smith, J., Burford, M. A., Revill, A. T., Haese, R. R., & Fortune, J. (2012). Effect of nutrient loading on biogeochemical processes in tropical tidal creeks. Biogeochemistry, 108(1-3), 359–380.  https://doi.org/10.1007/s10533-011-9605-z.CrossRefGoogle Scholar
  45. Souza, M. F. L., Eça, G. F., Silva, M. A. M., Amorim, F. A. C., & Lôbo, I. P. (2009). Distribuição de nutrientes dissolvidos e clorofila-a no estuário do Rio Cachoeira, nordeste do Brasil. Atlantica, 31(1), 107–121.Google Scholar
  46. Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., Joseph, P. M., & Ward, B. (2013). The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philosophical Transactions of the Royal Society, 368(1621), 20130121.  https://doi.org/10.1098/rstb.2013.0121.CrossRefGoogle Scholar
  47. Wen, L. S., Jiann, K. T., & Liu, K. K. (2008). Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river. Estuarine, Coastal and Shelf Science, 78(4), 694–704.  https://doi.org/10.1016/j.ecss.2008.02.011.CrossRefGoogle Scholar
  48. Wigner, T. N., Mead, L. H., & Molloy, S. L. (2013). A comparison of water quality between low- and high-flow river conditions in a tropical estuary, Hilo Bay, Hawaii. Estuaries and Coasts, 36(2), 319–333.  https://doi.org/10.1007/s12237-012-9576-x.CrossRefGoogle Scholar
  49. Xia, X., Liu, T., Yang, Z., Zhang, X., & Yu, Z. (2013). Dissolved organic nitrogen transformation in river water: effects of suspended sediment and organic nitrogen concentration. Journal of Hydrology, 484, 96–104.  https://doi.org/10.1016/j.jhydrol.2013.01.012.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Celimarcos Bezerra dos Santos
    • 1
  • Maria Aparecida Macêdo Silva
    • 2
  • Marcelo F. Landim de Souza
    • 2
  • Daniela Mariano Lopes da Silva
    • 1
    Email author
  1. 1.Departamento de Ciências BiológicasUniversidade Estadual de Santa Cruz (UESC)IlhéusBrazil
  2. 2.Departamento de Ciências Exatas e TecnológicasUniversidade Estadual de Santa CruzIlhéusBrazil

Personalised recommendations