Advertisement

Determining the size of a complete disturbance landscape: multi-scale, continental analysis of forest change

  • Brian Buma
  • Jennifer K Costanza
  • Kurt Riitters
Article
  • 248 Downloads

Abstract

The scale of investigation for disturbance-influenced processes plays a critical role in theoretical assumptions about stability, variance, and equilibrium, as well as conservation reserve and long-term monitoring program design. Critical consideration of scale is required for robust planning designs, especially when anticipating future disturbances whose exact locations are unknown. This research quantified disturbance proportion and pattern (as contagion) at multiple scales across North America. This pattern of scale-associated variability can guide selection of study and management extents, for example, to minimize variance (measured as standard deviation) between any landscapes within an ecoregion. We identified the proportion and pattern of forest disturbance (30 m grain size) across multiple landscape extents up to 180 km2. We explored the variance in proportion of disturbed area and the pattern of that disturbance between landscapes (within an ecoregion) as a function of the landscape extent. In many ecoregions, variance between landscapes within an ecoregion was minimal at broad landscape extents (low standard deviation). Gap-dominated regions showed the least variance, while fire-dominated showed the largest. Intensively managed ecoregions displayed unique patterns. A majority of the ecoregions showed low variance between landscapes at some scale, indicating an appropriate extent for incorporating natural regimes and unknown future disturbances was identified. The quantification of the scales of disturbance at the ecoregion level provides guidance for individuals interested in anticipating future disturbances which will occur in unknown spatial locations. Information on the extents required to incorporate disturbance patterns into planning is crucial for that process.

Keywords

Disturbance Scale Extent Ecoregion Spatial statistics Heterogeneity Landscape variability North America Reserve design Contagion 

Notes

Acknowledgements

This work was partially supported by NSF Alaska EPSCoR award #OIA-1208927 and the state of Alaska. Thanks is also expressed to Hansen et al. and Google Earth Engine for supplying the data on forest disturbances. Four anonymous reviewers provided helpful feedback.

Supplementary material

10661_2017_6364_MOESM1_ESM.xlsx (695 kb)
ESM 1 (XLSX 695 kb).
10661_2017_6364_MOESM2_ESM.docx (80 kb)
ESM 2 (DOCX 79 kb).

References

  1. Baker, W. L. (1992). The landscape ecology of large disturbances in the design and management of nature reserves. Landscape Ecology, 7(3), 181–194.  https://doi.org/10.1007/BF00133309.CrossRefGoogle Scholar
  2. Bengtsson, J., Angelstam, P., Elmqvist, T., et al. (2015). Reserves, resilience, and dynamic landscapes. Ambio, 32, 389–396.CrossRefGoogle Scholar
  3. Betts, M. G., Hagar, J. C., Rivers, J. W., & Alexander, J. D. (2010). Thresholds in forest bird occurrence as a function of the amount of early seral broadleaf forest at landscape scales. Ecological Applications, 20(8), 2116–2130.  https://doi.org/10.1890/09-1305.1.CrossRefGoogle Scholar
  4. Bissonette, J. A. (2012). Wildlife and landscape ecology: effects of pattern and scale. Chicago: Springer Science and Business Media.Google Scholar
  5. Buma, B., & Barrett, T. A. (2015). Spatial and topographic trends in forest expansion and biomass change, from regional to local scales. Global Change Biology, 21(9), 3445–3454.  https://doi.org/10.1111/gcb.12915.CrossRefGoogle Scholar
  6. Cabeza, M., & Moilanen, A. (2001). Design of reserve networks and the persistence of biodiversity. Trends in Ecology and Evolution, 16(5), 242–248.  https://doi.org/10.1016/S0169-5347(01)02125-5.CrossRefGoogle Scholar
  7. Core Team, R. (2015). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  8. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., & Kommareddy, A. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853.  https://doi.org/10.1126/science.1244693.CrossRefGoogle Scholar
  9. Hawbaker, T. J., Radeloff, V. C., Steward, S. I., Hammer, R. B., Keuler, N. S., & Clayton, M. K. (2013). Human and biophysical influences on fire occurrence in the United States. Ecological Applications, 23(3), 565–582.  https://doi.org/10.1890/12-1816.1.CrossRefGoogle Scholar
  10. Hijmans, R.J., van Etten, J. (2015). Raster: geographic analysis and modeling with raster data. R Package Version 2.0–12 http://CRAN.R-project.org/package=raster.
  11. Leroux, S. J., & Rayfield, B. (2014). Methods and tools for assessing natural disturbance dynamics in conservation planning for wilderness areas. Diversity and Distributions, 20(3), 258–271.  https://doi.org/10.1111/ddi.12155.CrossRefGoogle Scholar
  12. Leroux, S. J., Schmeigelow, F. K. A., Cumming, S. G., Lessard, R. B., & Nagy, J. (2007). Accounting for system dynamics in reserve design. Ecological Applications, 16, 1954–1966.CrossRefGoogle Scholar
  13. Loveland, T. R., & Merchant, J. M. (2004). Ecoregions and ecoregionalizatoin: geographical and ecological perspectives. Environmental Management, 34(1), S1–S13.  https://doi.org/10.1007/s00267-003-5181-x.CrossRefGoogle Scholar
  14. Mayer, A. L., Buma, B., Davis, A., Gagne, S. A., Loudermilk, E. L., Scheller, R., Schmiegelow, F., Wiersma, Y., & Franklin, J. (2016). How landscape ecology informs global land change science and policy. Bioscience, 66(6), 458–469.  https://doi.org/10.1093/biosci/biw035.CrossRefGoogle Scholar
  15. McGarigal, K., Cushman, S.A., Neel, M.C., Ene, E. (2012). FRAGSTATS v3: spatial pattern analysis program for categorical maps. Amherst, MA, USA.Google Scholar
  16. Mladenoff, D. J., White, M. A., Pastor, J., & Crow, T. R. (1993). Comparing spatial pattern in unaltered old-growth and disturbed forest landscapes. Ecological Applications, 3(2), 294–306.  https://doi.org/10.2307/1941832.CrossRefGoogle Scholar
  17. O’Hara, K. L., & Ramage, B. S. (2013). Silviculture in an uncertain world: utilizing multi-aged management systems to integrate disturbance. Forestry, 86(4), 401–410.  https://doi.org/10.1093/forestry/cpt012.CrossRefGoogle Scholar
  18. O’Neill, R. V., Johnson, A. R., & King, A. W. (1989). A hierarchical framework for the analysis of scale. Landscape Ecology, 3(3), 193–205.  https://doi.org/10.1007/BF00131538.CrossRefGoogle Scholar
  19. Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: a new map of life on earth. Bioscience, 51(11), 933–938.  https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.CrossRefGoogle Scholar
  20. Omernik, J. M., & Griffith, G. E. (2014). Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environmental Management, 54(6), 1249–1266.  https://doi.org/10.1007/s00267-014-0364-1.CrossRefGoogle Scholar
  21. Ott, R. A., & Juday, G. P. (2002). Canopy gap characteristics and their implications for management in the temperate rainforests of southeast Alaska. Forest Ecology and Management, 159(3), 271–291.  https://doi.org/10.1016/S0378-1127(01)00436-4.CrossRefGoogle Scholar
  22. Pickell, P. D., Andison, D. W., & Coops, N. C. (2013). Characterizations of anthropogenic disturbance patterns in the mixedwood boreal forest of Alberta, Canada. Forest Ecology and Management, 304, 243–253.  https://doi.org/10.1016/j.foreco.2013.04.031.CrossRefGoogle Scholar
  23. Pickett, S. T., & White, P. S. (1985). The ecology of natural disturbances. New York: Elsevier.Google Scholar
  24. Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M., & Wilson, K. A. (2007). Conservation planning in a changing world. Trends in Ecology and Evolution, 22(11), 583–592.  https://doi.org/10.1016/j.tree.2007.10.001.CrossRefGoogle Scholar
  25. Riitters, K., O’Neill, R. V., & Jones, K. B. (1997). Assessing habitat suitability at multiple scales: a landscape-level approach. Biological Conservation, 81(1-2), 191–202.  https://doi.org/10.1016/S0006-3207(96)00145-0.CrossRefGoogle Scholar
  26. Riitters, K., Wickham, J., O'Neill, R.V., Jones, B., Smith, E. (2000). Global-scale patterns of forest fragmentation. Conservation Ecology, 4(2):online.Google Scholar
  27. Riitters, K., Wickham, J., Costanza, J. K., & Vogt, P. (2015). A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012. Landscape Ecology, 31(1), 137–148.CrossRefGoogle Scholar
  28. Sayler, K. L., Acevedo, W., & Taylor, J. L. (2016). Status and trends of land change in selected US ecoregions-2000 to 2011. Photogrammetric Engineering & Remote Sensing, 82(9), 687–697.  https://doi.org/10.1016/S0099-1112(16)30120-3
  29. Schoennagel, T., Veblen, T. T., Kulakowski, D., & Holz, A. (2007). Multidecadal climate variability and climate interactions affect subalpine fire occurrence, Western Colorado (USA). Ecology, 88(11), 2891–2902.  https://doi.org/10.1890/06-1860.1.CrossRefGoogle Scholar
  30. Turner, M. G. (1989). Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics, 20(1), 171–197.  https://doi.org/10.1146/annurev.es.20.110189.001131.CrossRefGoogle Scholar
  31. Turner, M. G. (2010). Disturbance and landscape dynamics in a changing world. Ecology, 91(10), 2833–2849.  https://doi.org/10.1890/10-0097.1.CrossRefGoogle Scholar
  32. Turner, M. G., Romme, W. H., Gardner, R. H., O’Neill, R. V., & Kratz, T. K. (1993). A revised concept of landscape equilibrium: disturbance and stability on scaled landscapes. Landscape Ecology, 8(3), 213–227.  https://doi.org/10.1007/BF00125352.CrossRefGoogle Scholar
  33. Turner, M. G., Dale, V. H., & Everham III, E. H. (1997). Fires, hurricanes, and volcanoes: comparing large disturbances. Bioscience, 47(11), 758–769.  https://doi.org/10.2307/1313098.CrossRefGoogle Scholar
  34. Turner, D. P., Ritts, W. D., Kennedy, R. E., Gray, A. N., & Yang, Z. (2015). Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance. Carbon Balance and Management, 10(1), 1.CrossRefGoogle Scholar
  35. Wiens, J. A. (2009). Landscape ecology as a foundation for sustainable conservation. Landscape Ecology, 24(8), 1053–1065.  https://doi.org/10.1007/s10980-008-9284-x.CrossRefGoogle Scholar
  36. Zurlini, G., Riitters, K., Zaccarelli, N., Petrosillo, I., Jones, K. B., & Rossi, L. (2006). Disturbance patterns in a socio-ecological system at multiple scales. Ecological Complexity, 3(2), 119–128.  https://doi.org/10.1016/j.ecocom.2005.11.002.CrossRefGoogle Scholar
  37. Zurlini, G., Riitters, K., Zaccarelli, N., & Petrosillo, I. (2007). Patterns of disturbances at multiple scales in real and simulated landscapes. Landscape Ecology, 22(5), 705–721.  https://doi.org/10.1007/s10980-006-9055-5.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Natural SciencesUniversity of Alaska SoutheastJuneauUSA
  2. 2.Department of Forestry and Environmental ResourcesNorth Carolina State UniversityTriangle ParkUSA
  3. 3.Southern Research Station, USDA Forest ServiceTriangle ParkUSA

Personalised recommendations