Investigating the impacts of treated effluent discharge on coastal water health (Visakhapatnam, SW coast of Bay of Bengal, India)

  • Aziz Ur Rahman Shaik
  • Haimanti Biswas
  • N. Surendra Babu
  • N. P. C. Reddy
  • Z. A. Ansari
Article
  • 11 Downloads

Abstract

The present study investigated the impacts of treated effluent discharge on physicochemical and biological properties of coastal waters from three pharmaceuticals situated along the coast of Visakhapatnam (SW Bay of Bengal). Seawater samples were collected (during the months of December 2013, March 2014 and April 2014) from different sampling locations (Chippada (CHP), Tikkavanipalem (TKP) and Nakkapalli (NKP)) at 0- and 30-m depths within 2-km radius (0.5 km = inner, 1 km = middle and 2 km = outer sampling circles) from the marine outfall points. Physicochemical and biological parameters, which differed significantly within the stations, were likely to be influenced by strong seasonality rather than local discharge. Dissolved oxygen variability was tightly coupled with both physical and biological processes. Phytoplankton cell density and total chlorophyll (TChla) concentrations were significantly correlated with dissolved inorganic nutrient concentrations. CHP (December) represented a diatom bloom condition where the highest concentrations of diatom cells, total chlorophyll (TChla), dissolved oxygen coupled with lower zooplankton abundance and low nutrient levels were noticed. The centric diatom, Chaetoceros sp. (> 50%) dominated the phytoplankton community. TKP (March) represented a post-diatom bloom phase with the dominance of Pseudo-nitzschia seriata; zooplankton abundance and nutrient concentrations were minimum. Conversely, NKP (April) represented a warm well-stratified heterotrophic period with maximum zooplankton and minimum phytoplankton density. Dinoflagellate abundance increased at this station. Relatively higher water temperature, salinity, inorganic nutrients coupled with very low concentrations of dissolved oxygen, TChla and pH were observed at this station. Copepods dominated the zooplankton communities in all stations and showed their highest abundance in the innermost sampling circles. Treated effluent discharge did not seem to have any significant impact at these discharge points.

Keywords

Pharmaceutical effluent Coastal pollution Visakhapatnam Bay of Bengal Zooplankton Phytoplankton 

Notes

Acknowledgements

The authors thank the Scientist in Charge, Regional Centre, CSIR National Institute of Oceanography, Visakhapatnam, and the director of CSIR NIO for their continuous support and encouragement. All scientific staffs and projects assistants working at the biogeochemistry group of RC, Visakhapatnam, are thankfully acknowledged for their kind cooperation during this study. The financial support from the sponsors Divi Labs Ltd., J.N. Ramky Pharma City and Hetero Labs Ltd. is also gratefully acknowledged. NIO contribution number is 6131.

References

  1. Bandyopadhyay, D., Biswas, H., & Sarma, V. V. S. S. (2017). Impacts of SW monsoon on phytoplankton community structure along the western coastal BOB: an HPLC approach. Estuaries and Coasts. https://doi.org/10.1007/s12237-016-0198-6.
  2. Béthoux, J. P., Morin, P., & Ruiz-Pino, D. P. (2002). Temporal trends in nutrient ratios, chemical evidence of Mediterranean ecosystem changes driven by human activity. Deep Sea Research Part II, 49(11), 2007–2016.CrossRefGoogle Scholar
  3. Biswas, H., Dey, M., Ganguly, D., De, T. K., Ghosh, S., & Jana, T. K. (2010). Comparative analysis of phytoplankton composition and abundance over a two-decade period at the land–ocean boundary of a tropical mangrove ecosystem. Estuaries and Coasts, 33, 384–394.CrossRefGoogle Scholar
  4. Biswas, H., Mukhopadhyay, S. K., De, T. K., Sen, S., & Jana, T. K. (2004). Biogenic controls on the air-water carbon dioxide exchange in the Sundarbans mangrove environment, northeast coast of Bay of Bengal, India. Limnology and Oceanography, 49(1), 95–101.CrossRefGoogle Scholar
  5. Conley, D. J., Schelske, C. L., & Stroemer, E. F. (1993). Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecology Progress Series, 101, 179–192.CrossRefGoogle Scholar
  6. Damodhar, U., & Reddy, M. V. (2013). Impact of pharmaceutical industry treated effluents on the water quality of river Uppanar, South east coast of India, a case study. Applied Water Science, 3(2), 501–514.CrossRefGoogle Scholar
  7. D’Costa, P. M., & Anil, A. C. (2010). Diatom community dynamics in a tropical, monsoon-influenced environment: West coast of India. Continental Shelf Research, 30(12), 1324–1337.Google Scholar
  8. Dębska, J., Kot-Wasik, A., & Namieśnik, J. (2004). Fate and analysis of pharmaceutical residues in the aquatic environment. Critical Reviews in Analytical Chemistry, 34(1), 51–67. https://doi.org/10.1080/10408340490273753.CrossRefGoogle Scholar
  9. DeLorenzo, M. E., & Fleming, J. (2008). Individual and mixture effects of selected pharmaceuticals and personal care products on the marine phytoplankton species Dunaliella tertiolecta. Archives of Environmental Contamination and Toxicology, 54(2), 203–210.CrossRefGoogle Scholar
  10. Desikachary, T. V. (1987). Atlas of diatoms, marine diatoms of the Indian Ocean region, Vol 11. Madras Science Foundation Madras.Google Scholar
  11. Dugdale, R. C., & Goering, J. J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography, 12(2), 196–206.CrossRefGoogle Scholar
  12. Emblidge, J. P., & DeLorenzo, M. E. (2006). Preliminary risk assessment of the lipid regulating pharmaceutical, clofibric acid, to three estuarine species. Environmental Research, 100, 216–226.CrossRefGoogle Scholar
  13. Faust, M., Altenburger, R., Backhaus, T., Blanck, H., Boedeker, W., Gramatica, P., Hamer, V., Scholze, M., Vighi, M., & Grimme, L. H. (2003). Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquatic Toxicology, 63, 43–63.CrossRefGoogle Scholar
  14. Fernandes, V., & Ramaiah, N. (2009). Mesozooplankton community in the Bay of Bengal (India), spatial variability during the summer monsoon. Aquatic Ecology, 43(4), 951–963.CrossRefGoogle Scholar
  15. Galicka, W. (1992). Total nitrogen and phosphorus budgets in the Lowland Sulejow Reservoir for the hydrological years 1985–1988. Archiv für Hydrobiologie, Supplement, 90, 159–169.Google Scholar
  16. Granata, T. C., & Dicky, T. D. (1991). The fluid mechanics of copepod feeding currents in a turbulent flow, a theoretical approach. Progress in Oceanography, 26, 243–261.CrossRefGoogle Scholar
  17. Grasshoff, K. M., Ehrhardt, M., & Krembing, K. (1993). Methods of seawater analysis (3rd ed.). Germany: Verlag Chemic.Google Scholar
  18. Greenwood, A., O’Riordan, R. M., & Barnes, D. K. A. (2001). Seasonality and vertical zonation of zooplankton in a semi-enclosed sea lough. Journal of the Marine Biological Association of the UK, 81, 213–220.CrossRefGoogle Scholar
  19. Hasle, G. R., Syvertsen, E. E., Throndse, J., Steidinger, K. A., Tangen, K., & Heindal, B. R. (1997). In R. C. Tomas (Ed.), Identifying marine phytoplankton (kindle edition). Cambridge: Academic Press.Google Scholar
  20. Henschel, K. P., Wenzel, A., Diedrich, M., & Fliedner, A. (1997). Environmental hazard assessment of pharmaceuticals. Regulatory Toxicology and Pharmacology, 25(3), 220–225.CrossRefGoogle Scholar
  21. Ianora, A., Miralto, A., Poulet, S. A., Carotenuto, Y., Buttino, I., Romano, G., Casotti, R., Pohnert, G., Wichard, T., Colucci-D’Amato, L., Terrazzano, G., & Smetacek, V. (2004). Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature, 429, 403–407.CrossRefGoogle Scholar
  22. Ianora, A., Miralto, A., & Poulet, S. A. (1995). A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Marine Biology, 121, 533–539.CrossRefGoogle Scholar
  23. Ianora, A., & Miralto, A. (2010). Toxigenic effects of diatoms on grazers, phytoplankton and other microbes, a review. Ecotoxicology, 19, 493–511.CrossRefGoogle Scholar
  24. Irigoien, X., et al. (2002). Copepod hatching success in marine ecosystems with high diatom concentrations. Nature, 419, 387–389. https://doi.org/10.1038/nature01055.CrossRefGoogle Scholar
  25. Jørgensen, S. E., & Halling-Sørensen, B. (2000). Drugs in the environment. Chemosphere, 40(7), 691–699.CrossRefGoogle Scholar
  26. Kasturirangan, L. R. (1963). A key to the identification of the more common planktonic copepod of Indian coastal waters (p. 87). New Delhi: Indian National Committee on Ocean Research, Council of Scientific and Industrial Research.Google Scholar
  27. Kirk, K. L., & Gilbert, J. J. (1990). Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology, 71, 1741–1755.CrossRefGoogle Scholar
  28. Kramer, D. (1972). Collecting and processing data on fish eggs and larvae in the California current region. NOAA Technical Report NMFS CIRC, 370, l–38.Google Scholar
  29. Larsson, D. G. J. (2008). Drug production facilities, an overlooked discharge source for pharmaceuticals to the environment. In K. Kümmerer (Ed.), Pharmaceuticals in the environment, sources, fate, effects, and risks (pp. 37–42). New York: Spcircleer.Google Scholar
  30. Lawrence, D., Valiela, I., & Tomasky, G. (2004). Estuarine calanoid copepod abundance in relation to season, salinity, and land-derived nitrogen loading, Waquoit Bay, MA. Estuarine, Coastal and Shelf Science, 61, 547–557.CrossRefGoogle Scholar
  31. Lee, H. W., Ban, S., Ando, Y., Ota, T., & Ikeda, T. (1999). Deleterious effect of diatom diets on egg production and hatching success in the marine copepod Pseudocalanus newmani. Plankton Biology and Ecology, 46(2), 104,112.Google Scholar
  32. Margalef, R. (1978). In A. Sournia (Ed.), Phytoplankton manual, UNESCO (pp. 251–260). UK: Page Brothers (Norwich) Ltd..Google Scholar
  33. McCreary, J. P., Han, W., Shankar, D., & Shetye, S. R. (1996). Dynamics of the East India coastal current, 2. Numerical solutions. Journal of Geophysical Research, 101(C6), 13993–14020.CrossRefGoogle Scholar
  34. Mochizuki, M., Shiga, N., Saito, M., Imai, K., & Nojiri, Y. (2002). Seasonal changes in nutrients, chlorophyll a and the phytoplankton assemblage of the western subarctic gyre in the Pacific Ocean. Deep-Sea Research Part II, 49, 5421–5440.CrossRefGoogle Scholar
  35. Nair, S. S., Nair, V. R., Achuthankutty, C. T., & Madhupratap, M. (1981). Zooplankton composition and diversity in western Bay of Bengal. Journal of Plankton Research, 3(4), 493–508.CrossRefGoogle Scholar
  36. Nixon, S. W. (1988). Physical energy input and the comparative ecology of lake and marine ecosystems. Limnology Oceanography, 4(2), 1005–1025.Google Scholar
  37. O'Boyle, S., McDermott, G., Noklegaard, T., & Wilkes, R. (2013). A simple index of trophic status in estuaries and coastal bays based on measurements of pH and dissolved oxygen. Estuaries and Coasts, 36(1), 158–173.CrossRefGoogle Scholar
  38. O'Boyle, S., & Nolan, G. (2010). The influence of water column stratification on dissolved oxygen levels in coastal and shelf waters around Ireland (pp. 195–209). Dublin: The Royal Irish Academy.Google Scholar
  39. Officer, C. B., & Ryther, J. H. (1980). The possible importance of silicon in marine eutrophication. Marine Ecology Progress Series, 3, 83–91.CrossRefGoogle Scholar
  40. Osborn, T. (1996). The role of turbulent diffusion for copepods with feeding currents. Journal of Plankton Research, 18, 185–195.CrossRefGoogle Scholar
  41. Poulet, S. A., Ianora, A., Miralto, A., & Meijer, L. (1994). Do diatoms arrest egg development in copepods? Marine Ecology Progress Series, 111, 79–86.CrossRefGoogle Scholar
  42. PrasannaKumar, S., Nuncio, M., Narvekar, J., Ramaiah, N., Sardessai, S., Gauns, M., Fernandes, V., Paul, J. T., Jyothibabu, R., & Jayaraj, K. A. (2010). Seasonal cycle of physical forcing and biological response in the Bay of Bengal. Indian Journal of Geo Marine Sciences, 39(3), 388–405.Google Scholar
  43. Qasim, S. Z., Bhattathiri, P. M. A., & Abidi, S. A. H. (1968). Solar radiation and its penetration in a tropical estuary. Journal of Experimental Marine Biology and Ecology, 2, 87–103.CrossRefGoogle Scholar
  44. Rabalais, N. N., Turner, E., & Wiseman, W. J. (2002). Gulf of Mexico hypoxia, a.k.a. ‘The dead zone’. Annual Review of Ecology and Systematics, 33, 235–263.CrossRefGoogle Scholar
  45. Rick, H. J., & Dürselen, C. D. (1995). Importance and abundance of the recently established species Coscinodiscus wailesii Gran et Angst in the German Bight. Helgolander Meeresun, 49, 355–374.CrossRefGoogle Scholar
  46. Roy, S., Harris, R. P., & Pulet, S. A. (1989). Inefficient feeding by Calanus helgolandicus and Temora longicornis on Coscinodiscus wailesii, quantitative estimation using chlorophyll-type pigment and effects on dissolved free amino acids. Marine Ecology Progress Series, 52, 145–153.CrossRefGoogle Scholar
  47. Ryther, J. H., & Dunstan, W. M. (1971). Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science, 171, 3975,1008–3975,1013.CrossRefGoogle Scholar
  48. Santhanam, P., & Perumal, P. (2003). Diversity of zooplankton in Parangipettai coastal waters, southeast coast of India. Journal of the Marine Biological Association of India, 45, 144–151.Google Scholar
  49. Sarthou, G., Timmermans, K. R., Blain, S., & Treguer, P. (2005). Growth physiology and fate of diatoms in the ocean, a review. Journal of Sea Research, 53, 25–42.CrossRefGoogle Scholar
  50. Schmitt, F. G., & Seuront, L. (2008). Intermittent turbulence and copepod dynamics, increases in encounter rates through preferential concentration. Journal of Marine Systems, 70(304), 263–272.CrossRefGoogle Scholar
  51. Shaik, A. R., Biswas, H., Reddy, N. P. C., Srinivasa Rao, V., Bharathi, M. D., & Subbaiah, C. V. (2015). Time series monitoring of water quality and microalgal diversity in a tropical bay under intense anthropogenic interference (SW coast of Bay of Bengal, India). Environmental Impact Assessment Review, 55, 169–181.CrossRefGoogle Scholar
  52. Shenoi, S. S. C., Shankar, D., & Shetye, S. R. (2002). Differences in heat budget of the near surface Arabian Sea and Bay of Bengal, implications for the summer monsoon. Journal of Geophysical Research, 107(C6), 3052. https://doi.org/10.1029/2000JC000679.CrossRefGoogle Scholar
  53. Singh Rana, R., Singh, P., Kandari, V., Singh, R., Dobhal, R., & Gupta, S. (2013). A review on characterization and bioremediation of pharmaceutical industries’ wastewater, an Indian perspective. Applied Water Science. https://doi.org/10.1007/s13201-014-0225-3.
  54. Smayda, T. J. (1980). Phytoplankton species succession. In I. Moms (Ed.), The physiological ecology of phytoplankton (pp. 493–570). Oxford: Blackwell.Google Scholar
  55. Strickland, J. D., & Parsons, T. R. (1972). A practical handbook of seawater analysis, Vol. 167 (2nd ed.). Ottawa: Bulletin of the Fisheries Research Board of Canada.Google Scholar
  56. Tréguer, P., Lindner, L., van Bennekom, A. J., Leynaert, A., Panouse, M., & Jacques, G. (1991). Production of biogenic silica in the Weddell-Scotia Seas measured with 32Si. Limnology and Oceanography, 36, 1217–1227.CrossRefGoogle Scholar
  57. Utermohl, H. (1958). Zur Vervollkommung der quantitativen Phytoplankton- Methodik. Mitteilungen der Internationale Vereinigung fur theoretische und angewandte. Limnologie, 9, 1–38 (German).Google Scholar
  58. Varkey, M. J., Murty, V. S. N., & Suryanarayana, A. (1996). Physical oceanography of the Bay of Bengal and Andaman Sea. Oceanography and Marine Biology: An Annual Review, 34, 1–70.Google Scholar
  59. Vieno, N., Tuhkanen, T., & Kronberg, L. (2007). Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Research, 41(5), 1001–1012.CrossRefGoogle Scholar
  60. Wiegel, S., Aulinger, A., Brockmeyer, R., Harms, H., Loffler, J., Reincke, H., Schmidt, R., Stachel, B., von Tumpling, W., & Wanke, A. (2004). Pharmaceuticals in the river Elbe and its tributaries. Chemosphere, 57, 107–126.CrossRefGoogle Scholar
  61. Wetzel, R. G. (2001). Limnology: lake and river ecosystems (3rd ed.). San Diego: Academic Press.Google Scholar
  62. Wimpenny, R. S. (1966). The plankton of the sea (p. 426). London: Faber and Faber Ltd.Google Scholar
  63. Zhang, Q., Gradinger, R., & Spindler, M. (1999). Experimental study on the effect of salinity on growth rates of Arctic-sea-ice algae from the Greenland Sea. Boreal Environment Research, 4, 1–8.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Aziz Ur Rahman Shaik
    • 1
  • Haimanti Biswas
    • 1
  • N. Surendra Babu
    • 2
  • N. P. C. Reddy
    • 2
  • Z. A. Ansari
    • 1
  1. 1.Biological Oceanography DivisionCSIR-National Institute of OceanographyDona PaulaIndia
  2. 2.Regional CentreCSIR-National Institute of OceanographyVisakhapatnamIndia

Personalised recommendations