Skip to main content

Advertisement

Log in

An alternative approach for estimating above ground biomass using Resourcesat-2 satellite data and artificial neural network in Bundelkhand region of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Determination of above ground biomass (AGB) of any forest is a longstanding scientific endeavor, which helps to estimate net primary productivity, carbon stock and other biophysical parameters of that forest. With advancement of geospatial technology in last few decades, AGB estimation now can be done using space-borne and airborne remotely sensed data. It is a well-established, time saving and cost effective technique with high precision and is frequently applied by the scientific community. It involves development of allometric equations based on correlations of ground-based forest biomass measurements with vegetation indices derived from remotely sensed data. However, selection of the best-fit and explanatory models of biomass estimation often becomes a difficult proposition with respect to the image data resolution (spatial and spectral) as well as the sensor platform position in space. Using Resourcesat-2 satellite data and Normalized Difference Vegetation Index (NDVI), this pilot scale study compared traditional linear and nonlinear models with an artificial intelligence-based non-parametric technique, i.e. artificial neural network (ANN) for formulation of the best-fit model to determine AGB of forest of the Bundelkhand region of India. The results confirmed the superiority of ANN over other models in terms of several statistical significance and reliability assessment measures. Accordingly, this study proposed the use of ANN instead of traditional models for determination of AGB and other bio-physical parameters of any dry deciduous forest of tropical sub-humid or semi-arid area. In addition, large numbers of sampling sites with different quadrant sizes for trees, shrubs, and herbs as well as application of LiDAR data as predictor variable were recommended for very high precision modelling in ANN for a large scale study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aho, K., Derryberry, D., & Peterson, T. (2014). Model selection for ecologists: the worldviews of AIC and BIC. Ecology, 95, 631–636.

    Article  Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  • Balzarolo, M., Vicca, S., Nguy-Robertson, A. L., Bonal, D., Elbers, J. A., Fu, Y. H., Grünwald, T., Horemans, J. A., Papale, D., Peñuelas, J., & Suyker, A. (2016). Matching the phenology of net ecosystem exchange and vegetation indices estimated with MODIS and FLUXNET in-situ observations. Remote Sensing of Environment, 174, 290–300.

    Article  Google Scholar 

  • Basuki, T. M., Van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257, 1684–1694.

    Article  Google Scholar 

  • Bhattacharyya, T., Pal, D. K., Chandran, P., Ray, S. K., Mandal, C., & Telpande, B. (2008). Soil carbon storage capacity as a tool to prioritize areas for carbon sequestration. Current Science, 95, 482–494.

    CAS  Google Scholar 

  • Brown, S., Schroeder, P., & Birdsey, R. (1997). Aboveground biomass distribution of US eastern hardwood forests and the use of large trees as an indicator of forest development. Forest Ecology and Management, 96, 37–47.

    Article  Google Scholar 

  • Burivalova, Z., Şekercioğlu, Ç. H., & Koh, L. P. (2014). Thresholds of logging intensity to maintain tropical forest biodiversity. Current Biology, 24, 1893–1898.

    Article  CAS  Google Scholar 

  • Casanova, D., Epema, G. F., & Goudriaan, J. (1998). Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crops Research, 55, 83–92.

    Article  Google Scholar 

  • Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C. M., Saldarriaga, J. G., & Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20, 3177–3190.

    Article  Google Scholar 

  • Chen, Q., Gong, P., Baldocchi, D., & Tian, Y. Q. (2007). Estimating basal area and stem volume for individual trees from lidar data. Photogrammetric Engineering & Remote Sensing, 73, 355–1365.

    Google Scholar 

  • Cho, M. A., Skidmore, A., Corsi, F., Van Wieren, S. E., & Sobhan, I. (2007). Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. International Journal of Applied Earth Observation and Geoinformation, 9, 414–424.

    Article  Google Scholar 

  • Datta, D., & Chatterjee, D. (2012). Assessment of community-based initiatives in sustainable management of Indian dry deciduous forests. International Journal of Sustainable Development and World Ecology, 19, 155–171.

    Article  Google Scholar 

  • Datta, D., & Deb, S. (2012). Analysis of coastal land use/land cover changes in the Indian Sunderbans using remotely sensed data. Geo-Spatial Information Science, 15, 241–250.

    Article  Google Scholar 

  • Deb, S., Ahmed, A., & Datta, D. (2014). An alternative approach for delineating eco-sensitive zones around a wildlife sanctuary applying geospatial techniques. Environmental Monitoring and Assessment, 186, 2641–2651.

    Article  Google Scholar 

  • Deb, D., Ghosh, A., Singh, J. P., & Chaurasia, R. S. (2016). A study on general allometric relationships developed for biomass estimation in regional scale taking the example of Tectona grandis grown in Bundelkhand region of India. Current Science, 110, 414–419.

    Article  CAS  Google Scholar 

  • Dutta, J. R., Dutta, P. K., & Banerjee, R. (2004). Optimization of culture parameters for extracellular protease production from a newly isolated Pseudomonas sp. using response surface and artificial neural network models. Process Biochemistry, 39, 2193–2198.

    Article  CAS  Google Scholar 

  • Englhart, S., Keuck, V., & Siegert, F. (2012). Modeling aboveground biomass in tropical forests using multi-frequency SAR data—a comparison of methods. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, 298–306.

    Article  Google Scholar 

  • Erzin, Y., & Cetin, T. (2013). The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions. Computers and Geosciences, 51, 305–313.

    Article  Google Scholar 

  • Evrendilek, F., Denizli, H., Yetis, H., & Karakaya, N. (2013). Monitoring spatiotemporal variations of diel radon concentrations in peatland and forest ecosystems based on neural network and regression models. Environmental Monitoring and Assessment, 185, 5577–5583.

    Article  CAS  Google Scholar 

  • Foody, G. M., Boyd, D. S., & Cutler, M. E. (2003). Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85, 463–474.

    Article  Google Scholar 

  • Gao, T., Xu, B., Yang, X. C., Jin, Y. X., Ma, H. L., Li, J. Y., & Yu, H. D. (2013). Using MODIS time series data to estimate aboveground biomass and its spatio-temporal variation in inner Mongolia’s grassland between 2001 and 2011. International Journal of Remote Sensing, 34, 7796–7810.

    Article  Google Scholar 

  • Gregoire, T. G., Næsset, E., McRoberts, R. E., Ståhl, G., Andersen, H. E., Gobakken, T., Ene, L., & Nelson, R. (2016). Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass. Remote Sensing of Environment, 173, 98–108.

    Article  Google Scholar 

  • Gunther, F., & Fritsch, S. (2010). Neuralnet: Training of neural networks. The R Journal, 2, 30–38.

    Google Scholar 

  • Gupta, A. K., Nair, S. S., Ghosh, O., Singh, A., & Dey, S. (2014). Bundelkhand drought: a retrospective analysis and way ahead. National Institute of Disaster Management: New Delhi.

    Google Scholar 

  • Hao, F., Zhang, X., Ouyang, W., Skidmore, A. K., & Toxopeus, A. G. (2011). Vegetation NDVI linked to temperature and precipitation in the upper catchments of Yellow River. Environmental Modeling and Assessment, 17, 389–398.

    Article  Google Scholar 

  • Heath, L. S., Birdsey, R. A., Row, C., & Plantinga, A. J. (1996). Carbon pools and fluxes in US forest products. In M. Apps & D. Price (Eds.), Forest Ecosystems, Forest Management, and the Global Carbon Cycle (pp. 271–278). Berlin: Springer- Heidelberg.

    Chapter  Google Scholar 

  • Huete, A. R., & Liu, H. Q. (1994). An error and sensitivity analysis of the atmospheric- and soil-correcting variants of the NDVI for the MODIS-EOS. IEEE Transactions on Geoscience and Remote Sensing, 32, 897–905.

    Article  Google Scholar 

  • Indian State of Forest Report (ISFR). (2003). State of Forest report 2003, Forest survey of India. Dehradun: Ministry of Environment & Forests.

    Google Scholar 

  • Indian State of Forest Report (ISFR). (2011). State of Forest report 2011, Forest survey of India. Dehradun: Ministry of Environment & Forests.

    Google Scholar 

  • Ingram, J. C., Dawson, T. P., & Whittaker, R. J. (2005). Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sensing of Environment, 94, 491–507.

    Article  Google Scholar 

  • Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial neural networks: a tutorial. IEEE Computer, 29, 31–44.

    Article  Google Scholar 

  • Kale, M., Singh, S., Roy, P. S., Deosthali, V., & Ghole, V. S. (2004). Biomass equations of dominant species of dry deciduous forest in Shivpuri district, Madhya Pradesh. Current Science, 87, 683–687.

    Google Scholar 

  • Kelsey, K. C., & Neff, J. C. (2014). Estimates of aboveground biomass from texture analysis of landsat imagery. Remote Sensing, 6, 6407–6422.

    Article  Google Scholar 

  • Lai, J., Yang, B., Lin, D., Kerkhoff, A. J., & Ma, K. (2013). The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression? PLoS One, 8, e77007.

    Article  CAS  Google Scholar 

  • Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4, 4–22.

    Article  Google Scholar 

  • Liu, Z., Peng, C., Xiang, W., Tian, D., Deng, X., & Zhao, M. (2010). Application of artificial neural networks in global climate change and ecological research: an overview. Chinese Science Bulletin, 34, 3853–3863.

    Article  Google Scholar 

  • Lu, D., Li, G., & Moran, E. (2014). Current situation and needs of change detection techniques. International Journal of Image and Data Fusion, 5, 13–38.

    Article  Google Scholar 

  • Luo, S., Wang, C., Xi, X., Pan, F., Peng, D., Zou, J., Nie, S., & Qin, H. (2017). Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation. Ecological Indicators, 73, 378–387.

    Article  CAS  Google Scholar 

  • Majumdar, S. (2008). Above ground biomass and carbon assessment in forests using high and medium resolution satellite data in Panna Taluk, Madhya Pradesh. Master’s degree (M. Tech) thesis, Andhra University, Visakhapatnam and Indian Institute of Remote Sensing, Dehradun.

  • Mani, S., & Parthasarathy, N. (2007). Above-ground biomass estimation in ten tropical dry evergreen forest sites of peninsular India. Biomass and Bioenergy, 31, 284–290.

    Article  Google Scholar 

  • Mutanga, O., & Skidmore, A. K. (2004). Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions. International Journal of Applied Earth Observation and Geoinformation, 5, 87–96.

    Article  Google Scholar 

  • Myers, R. A., MacKenzie, B. R., Bowen, K. G., & Barrowman, N. J. (2001). What is the carrying capacity for fish in the ocean? A meta analysis of population dynamics of North Atlantic cod. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1464–1476.

    Article  Google Scholar 

  • Nefeslioglu, H. A., Gokceoglu, C., & Sonmez, H. (2008). An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology, 97, 171–191.

    Article  Google Scholar 

  • Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., & Running, S. W. (2003). Climate driven increases in global terrestrial net primary production from 1982–1999. Science, 300, 1560–1563.

    Article  CAS  Google Scholar 

  • Ogaya, R., Barbeta, A., Başnou, C., & Peñuelas, J. (2015). Satellite data as indicators of tree biomass growth and forest dieback in a Mediterranean holm oak forest. Annals of Forest Science, 72, 135–144.

    Article  Google Scholar 

  • Olden, J. D., & Jackson, D. A. (2002). Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154, 135–150.

    Article  Google Scholar 

  • Paine, C. E. T., Marthews, T. R., Vogt, D. R., Purves, D., Rees, M., Hector, A., & Turnbull, L. A. (2012). How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution, 3, 245–256.

    Article  Google Scholar 

  • Peek, M. S., Cohen, E. R., Wait, D. A., & Forseth, I. N. (2002). Physiological response curve analysis using nonlinear mixed models. Oecologia, 132, 175–180.

    Article  Google Scholar 

  • Popescu, S. C. (2007). Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy, 31, 646–655.

    Article  Google Scholar 

  • Powell, S. L., Cohen, W. B., Healey, S. P., Kennedy, R. E., Moisen, G. G., Pierce, K. B., & Ohmann, J. L. (2010). Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sensing of Environment, 114, 1053–1068.

    Article  Google Scholar 

  • Resourcesat-2 Handbook (2016). Available from URL: http://lps16.esa.int/posterfiles/ paper1213/[RD13]_Resourcesat-2_Handbook.pdf. Accessed 23 August, 2016.

  • Ritz, C., & Streibig, J. (2008). Nonlinear regression with R. New York: Springer-Verlag.

    Google Scholar 

  • Sarkar, A. (2008). Geospatial approach in soil & climatic data analysis for agro-climatic suitability assessment of major crops in rainfed agroecosystem. Master’s degree (M. Tech) thesis, Andhra university, Visakhapatnam and Indian Institute of Remote Sensing, Dehradun.

  • Sharma, L. K., Nathawat, M. S., & Sinha, S. (2013). Top-down and bottom-up inventory approach for above ground forest biomass and carbon monitoring in REDD framework using multi-resolution satellite data. Environmental Monitoring and Assessment, 185, 8621–8637.

    Article  CAS  Google Scholar 

  • Sheikh, M. A., Kumar, M., Bussman, R. W., & Todaria, N. P. (2011). Forest carbon stocks and fluxes in physiographic zones of India. Carbon Balance and Management, 6, 15.

    Article  CAS  Google Scholar 

  • Singh, A. K., Raj, B., Tiwari, A. K., & Mahato, M. K. (2013). Evaluation of hydrogeochemical processes and groundwater quality in the Jhansi district of Bundelkhand region, India. Environmental Earth Sciences, 70, 1225–1247.

    Article  CAS  Google Scholar 

  • Snee, R. D. (1977). Validation of regression model: Methods and examples. Technometrics, 19, 415–428.

    Article  Google Scholar 

  • Tiryaki, S., & Aydın, A. (2014). An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Construction and Building Materials, 62, 102–108.

    Article  Google Scholar 

  • Vahedi, A. A. (2016). Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran. Biomass and Bioenergy, 88, 66–76.

    Article  Google Scholar 

  • Whittaker, R. H., & Marks, P. L. (1975). Methods of assessing terrestrial productivity. In H. Leith & R. H. Whittaker (Eds.), Primary productivity of the biosphere (pp. 55–118). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Yen, T.-M. (2015). Comparing aboveground structure and aboveground carbon storage of an age series of moso bamboo forests subjected to different management strategies. Journal of Forest Research, 20, 1–8.

    Article  CAS  Google Scholar 

  • Yoshioka, H., Miura, T., & Obata, K. (2012). Derivation of relationships between spectral vegetation indices from multiple sensors based on vegetation isolines. Remote Sensing, 4, 583–597.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the people who helped us during field data collection and the local villagers of the Buldelkhand area for their valuable guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shovik Deb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, D., Singh, J.P., Deb, S. et al. An alternative approach for estimating above ground biomass using Resourcesat-2 satellite data and artificial neural network in Bundelkhand region of India. Environ Monit Assess 189, 576 (2017). https://doi.org/10.1007/s10661-017-6307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6307-6

Keywords

Navigation