Advertisement

Mobility of Pb, Zn, Cu and As in disturbed forest soils affected by acid rain

  • Yulia V. Kochergina
  • Martin Udatný
  • Vít Penížek
  • Martin Mihaljevič
Article

Abstract

Early efforts at remediation of contaminated soils involve overturn or removal of the uppermost soil horizons. We find that such disruption is counterproductive, as it actually increases the mobility of the heavy metals involved. In our study, we sought to replicate in a controlled manner this commonly used remediation strategy and measure Pb, Zn, Cu and As concentrations in all soil horizons—both prior to and 1 year after disruption by trenching. BCR analyses (sequential leaching) indicate that Pb is affected to the greatest degree and is most highly mobile; however, Zn and As remain insoluble, thus partially ameliorating the detrimental effect. Differences in vegetation cover (i.e. spruce vs. beech forest) have little influence on overall element mobility patterns. The Krušné hory (Ore Mts., Czech Republic) study area is one of the more heavily contaminated areas in Central Europe, and thus the results reported here are applicable to areas affected by brown-coal-burning power plants.

Keywords

Forest soils Hazardous elements Načetín Contamination Mobility BCR sequential extraction 

Notes

Acknowledgements

We are indebted to Marie Fayadová for help with trace elements analyses, Ondřej Šebek for ICP-OES measurements. Dr. John M. Hora is thanked for revision of the English in the manuscript. We are grateful to anonymous reviewer and Dr. J. A. Elvir for editorial handling.

Funding information

This study was funded by the Czech Science Foundation (13-17501S) and Operational Programme Prague—Competitiveness (Project CZ.2.16/3.1.00/21516). MU was supported by the Grant Agency of the Charles University in Prague project No. 338811.

Supplementary material

10661_2017_6306_MOESM1_ESM.xlsx (48 kb)
ESM 1 The results of total and sequence analyses used for GCDkit calculations are given in an electronic Supplement (XLSX 48 kb)

References

  1. Černý, J. (1993). Atmospheric deposition in the Krusne hory Mts. Preliminary results of throughfall measurements. Acta Universitatis Carolinae - Geologica, 1–2.Google Scholar
  2. Černý, J., & Pačes, T. (Eds.). (1995). Acidification in the Black Triangle Region—ACID REIGN’ 95?: 5th International Conference on Acid Deposition Science and Policy. Prague: Czech Geological Survey.Google Scholar
  3. Dambrine, E., Kinkor, V., Jehlicka, J., & Gelhaye, D. (1993). Fluxes of dissolved mineral elements through a forest ecosystem submitted to extremely high atmospheric pollution inputs (Czech Republic). Annals des Science Forest, 50, 147–157.CrossRefGoogle Scholar
  4. Dumat, C., Chiquet, A., Gooddy, D., Aubry, E., Morin, G., Juillot, F., & Benedetti, M. F. (2001). Metal ion geochemistry in smelter impacted soils and soil solutions. Bulletin La Societe Geologique France, 172, 539–548.CrossRefGoogle Scholar
  5. Ferrier, R. C., Jenkins, A., Wright, R. F., Schöpp, W., & Barth, H. (2016). Assessment of recovery of European surface waters from acidification 1970-2000: an introduction to the Special Issue. Hydrology and Earth System Sciences, 5, 274–282.CrossRefGoogle Scholar
  6. Cháb, J., Breiter, K., Fatka, O., Hladil, J., Kalvoda, J., Šimůnek, Z., Štorch, P., Vašíček, Z., Zajíc, J., Zapletal, J., et al. (2010). Outline of the geology of the Bohemian Massif: the basement rocks and their carboniferous and Permian cover. Prague: Czech Geological Survey.Google Scholar
  7. Chrástný, V., Vaněk, A., Teper, L., Cabala, J., Procházka, J., Pechar, L., Drahota, P., Penížek, V., Komárek, M., & Novák, M. (2012). Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source. Environmental Monitoring and Assessment, 184, 2517–2536.CrossRefGoogle Scholar
  8. ISO 11274 (1998). Soil quality—Determination of the water-retention characteristic.Google Scholar
  9. ISO 11272 (2017). Soil quality—Determination of dry bulk density.Google Scholar
  10. ISO 11508 (1998). Soil quality—Determination of particle density.Google Scholar
  11. Janoušek, V., Farrow, C. M., & Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47, 1255–1259.CrossRefGoogle Scholar
  12. Janoušek, V., Moyen, J.-F., Martin, H., Erban, V., & Farrow, C. (2016). Geochemical modelling of igneous processes—principles and recipes in R language: bringing the power of R to a geochemical community. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  13. Kodešová, R., Vignozzi, N., Rohosková, M., Hájková, T., Kocárek, M., Pagliai, M., Kozák, J., & Simůnek, J. (2009). Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types. Journal of Contaminant Hydrology, 104, 107–125.CrossRefGoogle Scholar
  14. Kubelka, L., Karásek, A., Rybář, V., Badalík, V., & Slodičák, M. (1993). Forest regeneration in the heavily polluted NE “Krušné Hory” Mountains. Prague: Czech Ministry of Agriculture in AGROSPOJ.Google Scholar
  15. Lamb, D. T., Ming, H., Megharaj, M., & Naidu, R. (2009). Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 171, 1150–1158.CrossRefGoogle Scholar
  16. Mihaljevič, M., Ettler, V., Šebek, O., Drahota, P., Strnad, L., Procházka, R., Zeman, J., & Sracek, O. (2010). Alteration of arsenopyrite in soils under different vegetation covers. Science Total Environment, 408.Google Scholar
  17. Moldan, B., & Schnoor, J. L. (1992). Czechoslovakia examining a critically ill environment. Environmental Science & Technology, 26, 14–21.CrossRefGoogle Scholar
  18. Navrátil, T., Shanley, J. B., Rohovec, J., Oulehle, F., Šimeček, M., Houška, J., & Cudlín, P. (2016). Soil mercury distribution in adjacent coniferous and deciduous stands highly impacted by acid rain in the Ore Mountains, Czech Republic. Applied Geochemistry, 75, 63–75.CrossRefGoogle Scholar
  19. Novák, M., Bottrell, S. H., Groscheová, H., Buzek, F., & Černý, J. (1995). Sulphur isotope characteristics of two north Bohemian forest catchments. Water, Air, & Soil Pollution, 85, 1641–1646.CrossRefGoogle Scholar
  20. Novák, M., Buzek, F., Harrison, A. F., Přechová, E., Jačková, I., & Fottová, D. (2003). Similarity between C, N and S stable isotope profiles in European spruce forest soils: implications for the use of δ34S as a tracer. Applied Geochemistry, 18, 765–779.CrossRefGoogle Scholar
  21. Novák, M., Kirchner, J. W., Groscheová, H., Havel, M., Černý, J., Krejčí, R., & Buzek, F. (2000). Sulfur isotope dynamics in two central European watersheds affected by high atmospheric deposition of SOx. Geochimica et Cosmochimica Acta, 64, 367–383.CrossRefGoogle Scholar
  22. Oulehle, F., Hofmeister, J., Cudlín, P., & Hruška, J. (2006). The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Načetín, Czech Republic. Science Total Environment, 370, 532–544.CrossRefGoogle Scholar
  23. Oulehle, F., Hofmeister, J., & Hruška, J. (2007). Modeling of the long-term effect of tree species (Norway spruce and European beech) on soil acidification in the Ore Mountains. Ecological Modelling, 204, 359–371.CrossRefGoogle Scholar
  24. Oulehle, F., & Hruška, J. (2005). Tree species (Picea abies and Fagus sylvatica) effects on soil water acidification and aluminium chemistry at sites subjected to long-term acidification in the Ore Mts., Czech Republic. Journal of Inorganic Biochemistry, 99, 1822–1829.CrossRefGoogle Scholar
  25. Pansu, M., & Gautheyrou, J. (2006). Handbook of soil analysis. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  26. Sutherland, R. A., & Tack, F. M. (2002). Determination of Al, Cu, Fe, Mn, Pb and Zn in certified reference materials using the optimized BCR sequential extraction procedure. Analytica Chimica Acta, 454, 249–257.CrossRefGoogle Scholar
  27. Udatný, M., Mihaljevič, M., Sebek, O., & Šebek, O. (2014). Release of mobile forms of hazardous elements from glassworks fly ash into soils. Environmental Geochemistry and Health, 36, 855–866.CrossRefGoogle Scholar
  28. Weiss, D. (1983). Methods of chemical analysis of mineral resources. Prague: Czech Geological Survey.Google Scholar
  29. Zuna, M., Mihaljevič, M., Šebek, O., Ettler, V., Handley, M., Navrátil, T., & Goliáš, V. (2011). Recent lead deposition trend as recorded by peat bogs and tree rings. Atmospheric Environment, 45, 4950–4958.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yulia V. Kochergina
    • 1
  • Martin Udatný
    • 1
  • Vít Penížek
    • 2
  • Martin Mihaljevič
    • 1
  1. 1.Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of ScienceCharles University in PraguePragueCzech Republic
  2. 2.Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PraguePragueCzech Republic

Personalised recommendations