Advertisement

Spatial and temporal distribution of carbon dioxide gas using GOSAT data over IRAN

  • Samereh FalahatkarEmail author
  • Seyed Mohsen Mousavi
  • Manochehr Farajzadeh
Article
  • 274 Downloads

Abstract

CO2 concentration (XCO2) shows the spatial and temporal variation in Iran. The major purpose of this investigation is the assessment of the spatial distribution of carbon dioxide concentration in the different seasons of 2013 based on the Thermal And Near Infrared Sensor for Carbon Observation–Fourier Transform Spectrometer (TANSO-FTS) level 2 GOSAT data by implementing the ordinary kriging (OK) method. In this study, the Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) data from the MODerate resolution Imaging Spectroradiometer (MODIS), and metrological parameters (temperature and precipitation) were used for the analysis of the spatial distribution of CO2 over Iran in 2013. The spatial distribution maps of XCO2 show the highest concentration of this gas in the south and south-east and the lowest concentration in the north and north-west. These results indicate that the concentration of carbon dioxide decreased with the increase of LST and temperature and a decrease of NDVI and humidity in the study area. Therefore, the existence of vegetation has an effective role in capturing carbon from the atmosphere by photosynthesis phenomena, and sustainable land management can be effective for carbon absorption from the atmosphere and mitigation of climate change in arid and semi-arid regions.

Keywords

Climate change Satellite monitoring Interpolation Land cover NDVI LST 

Notes

Acknowledgements

This work was supported by Iran National Science Foundation. We would like to thank the Islamic Republic of Iran Meteorological Organization, the GOSAT Project of Japan, and NASA for the use of their data in this research.

References

  1. Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O., & Scheepmaker, R. A. (2015). Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY. Atmospheric Chemistry and Physics, 15(1), 113–133.  https://doi.org/10.5194/acp-15-113-2015.CrossRefGoogle Scholar
  2. Andrews, A. E., Boering, K. A., Daube, B. C., Wofsy, S. C., Loewenstein, M., Jost, H., Podolske, J. R., Webster, C. R., Herman, R. L., Scott, D. C., Flesch, G. J., Moyer, E. J., Elkins, J. W., Dutton, G. S., Hurst, D. F., Moore, F. L., Ray, E. A., Romashkin, P. A., & Strahan, S. E. (2001). Mean ages of stratospheric air derived from in situ observations of CO2, CH4, and N2O. Journal of Geophysical Research. Atmospheres, 106, 32295–32314.  https://doi.org/10.1029/2001JD000465.CrossRefGoogle Scholar
  3. Badripour, H. (2004). Islamic Republic of Iran. Country pasture/forage resource profiles. Rangeland management expert in the Technical Bureau of Rangeland–grown at three environments. Crop Science, 16, 347–349.Google Scholar
  4. Bai, W., Zhang, X., & Zhang, P. (2010). Temporal and spatial distribution of tropospheric CO2 over China based on satellite observations. Chinese Science Bulletin, 55, 3612–3618.  https://doi.org/10.1007/s11434-010-4182-4.CrossRefGoogle Scholar
  5. Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.  https://doi.org/10.2136/sssaj1994.03615995005800050033x.CrossRefGoogle Scholar
  6. Chevallier, F., Engelen, R. J., & Peylin, P. (2005). The contribution of AIRS data to the estimation of CO2 sources and sinks. Geophysical Research Letters, 32, L23801.  https://doi.org/10.1029/2005GL024229.
  7. Chow, F. K., Granvold, P. W., & Oldenburg, C. M. (2009). Modeling the effects of topography and wind on atmospheric dispersion of CO2 surface leakage at geologic carbon sequestration sites. Energy Procedia, 1, 1925–1932.  https://doi.org/10.1016/j.egypro.2009.01.251.CrossRefGoogle Scholar
  8. Cressot, C., Chevallier, F., Bousquet, P., Crevoisier, C., Dlugokencky, E. J., Fortems-Cheiney, A., & Montzka, S. A. (2014). On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI, and surface measurements. Atmospheric Chemistry and Physics, 14, 577–592.  https://doi.org/10.5194/acp-14-577-2014.CrossRefGoogle Scholar
  9. Dai, L., Jia, J., Yu, D., Lewis, B. J., Zhou, L., Zhou, W., Zhao, W., & Jiang, L. (2013). Effects of climate change on biomass carbon sequestration in old-growth forest ecosystems on Changbai Mountain in Northeast China. Forest Ecology and Management, 300, 106–116.  https://doi.org/10.1016/j.foreco.2012.06.046.CrossRefGoogle Scholar
  10. Davidson, O., Bosch, P., Dave, R., & Meyer, L. (2007). Mitigation of climate change. Cambridge: Cambridge University Press.Google Scholar
  11. Deng, S., Shi, Y., Jin, Y., & Wang, L. (2011). A GIS-based approach for quantifying and mapping carbon sink and stock values of forest ecosystem: a case study. Energy Procedia, 5, 1535–1545.  https://doi.org/10.1016/j.egypro.2011.03.263.CrossRefGoogle Scholar
  12. Dong, Y., Zhang, S., Qi, Y., Chen, Z., & Geng, Y. (2000). Fluxes of CO2, N2O and CH4 from a typical temperate grassland in Inner Mongolia and its daily variation. Chinese Science Bulletin, 45, 1590–1594.  https://doi.org/10.1007/BF02886219.CrossRefGoogle Scholar
  13. Englund, E., Weber, D., & Leviant, N. (1992). The effects of sampling design parameters on block selection. Mathematical Geology, 24, 329–343.  https://doi.org/10.1007/BF00893753.CrossRefGoogle Scholar
  14. ENI. (2016). ENCYCLOPAEDIA IRANICA. http://www.iranicaonline.org . Accessed 12 Nov 2016.
  15. Fu, L., Zhao, Y., Xu, Z., & Wu, B. (2015). Spatial and temporal dynamics of forest aboveground carbon stocks in response to climate and environmental changes. Journal of Soils and Sediments, 15, 249–259.  https://doi.org/10.1007/s11368-014-1050-x.CrossRefGoogle Scholar
  16. Gavrilov, N. M., Makarova, M. V., Poberovskii, A. V., & Timofeyev, Y. M. (2014). Comparisons of CH4 ground-based FTIR measurements near Saint Petersburg with GOSAT observations. Atmospheric Measurement Techniques, 7, 1003–1010.  https://doi.org/10.5194/amt-7-1003-2014, 2014.CrossRefGoogle Scholar
  17. Guo, M., Wang, X., Li, J., Yi, K., Zhong, G., & Tani, H. (2012). Assessment of global carbon dioxide concentration using MODIS and GOSAT data. Sensors, 12, 16368–16389.  https://doi.org/10.3390/s121216368.CrossRefGoogle Scholar
  18. Guo, M., Wang, X., Li, J., Wang, H., & Tani, H. (2013a). Examining the relationships between land cover and greenhouse gas concentrations using remote-sensing data in East Asia. International Journal of Remote Sensing, 34, 4281–4303.  https://doi.org/10.1080/01431161.2013.775535.CrossRefGoogle Scholar
  19. Guo, M., Wang, X. F., Li, J., Yi, K. P., Zhong, G. S., Wang, H. M., & Tani, H. (2013b). Spatial distribution of greenhouse gas concentrations in arid and semi-arid regions: a case study in East Asia. Journal of Arid Environments, 91, 119–128.  https://doi.org/10.1016/j.jaridenv.2013.01.001.CrossRefGoogle Scholar
  20. Hannah, L. (2014). Carbon sinks and sources. In L. Hannah (Ed.), Climate change biology second ed (pp. 403–422). Santa Barbara: University of California.Google Scholar
  21. Hou, Y., Wang, S., Zhou, Y., Yan, F., & Zhu, J. (2013). Analysis of the carbon dioxide concentration in the lowest atmospheric layers and the factors affecting China based on satellite observations. International Journal of Remote Sensing, 34, 1981–1994.  https://doi.org/10.1080/01431161.2012.730159.CrossRefGoogle Scholar
  22. IMO, (2016). Iran Meteorological Organization. http://www.irimo.ir/far/. Accessed 9 Sep 2016.
  23. Inoue, M., Morino, I., Uchino, O., Miyamoto, Y., Saeki, T., Yoshida, Y., & Machida, T. (2014). Validation of XCH4 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data. Atmospheric Measurement Techniques, 7, 2987–3005.  https://doi.org/10.5194/amt-7-2987-2014.CrossRefGoogle Scholar
  24. Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to Applied Geostatistics. New York: Oxford University Press.Google Scholar
  25. Janssens-Maenhout, G., Petrescu, A. M. R., Muntean, M., & Blujdea, V. (2011). Verifying greenhouse gas emissions: methods to support international climate agreements. Greenhouse Gas Measurement and Management, 1, 132–133.  https://doi.org/10.1080/20430779.2011.579358.CrossRefGoogle Scholar
  26. Journel, A. G., & Huijbregts, C. J. (1978). Mining Geostatistics. Caldwell: Blackburn Press.Google Scholar
  27. Laslett, G. M. (1994). Kriging and splines: an empirical comparison of their predictive performance in some applications. Journal of the American Statistical Association, 89, 391–400.CrossRefGoogle Scholar
  28. Li, J., & Heap, A. D. (2011). A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecological Informatics, 6, 228–241.  https://doi.org/10.1016/j.ecoinf.2010.12.003.CrossRefGoogle Scholar
  29. Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: a review. Environmental Modelling and Software, 53, 173–189.  https://doi.org/10.1016/j.envsoft.2013.12.008.CrossRefGoogle Scholar
  30. Modarres, R., & da Silva, V. D. P. R. (2007). Rainfall trends in arid and semi-arid regions of Iran. Journal of Arid Environments, 70, 344–355.  https://doi.org/10.1016/j.jaridenv.2006.12.024.CrossRefGoogle Scholar
  31. Morino, I., Uchino, O., Inoue, M., Yoshida, Y., Yokota, T., Wennberg, P. O., Toon, G. C., Wunch, D., Roehl, C. M., Notholt, J., Warneke, T., Messerschmidt, J., Griffith, D. W. T., Deutscher, N. M., Sherlock, V., Connor, B., Robinson, J., Sussmann, R., & Rettinger, M. (2011). Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmospheric Measurement Techniques, 4, 1061–1076.  https://doi.org/10.5194/amt-4-10612011.CrossRefGoogle Scholar
  32. Mousavi, S. M., Falahatkar, S., & Farajzadeh, M. (2017). Assessment of seasonal variations of carbon dioxide concentration in Iran using GOSAT data. Natural Resources Forum, 41, 83–91.  https://doi.org/10.1111/1477-8947.12121.CrossRefGoogle Scholar
  33. Oldenburg, C. M., & Unger, A. J. (2004). Coupled vadose zone and atmospheric surface-layer transport of carbon dioxide from geologic carbon sequestration sites. Vadose Zone Journal, 3, 848–857.  https://doi.org/10.2136/vzj2004.0848.CrossRefGoogle Scholar
  34. Prasad, P., Rastogi, S., & Singh, R. P. (2014). Study of satellite retrieved CO2 and CH4 concentration over India. Advances in Space Research, 54, 1933–1940.  https://doi.org/10.1016/j.asr.2014.07.021.CrossRefGoogle Scholar
  35. Prasad, P., Rastogi, S., & Singh, R. P. (2016). Study of CO2 variability over India using data from satellites. Paper presented at the Conference of the International Society for Optics and Photonics, 10–14 may 2016. Doi: https://doi.org/10.1117/12.2228029.
  36. Robertson, G. P., Klingensmith, K. M., Klug, M. J., Paul, E. A., Crum, J. R., & Ellis, B. G. (1997). Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecological Applications, 7, 158–170.  https://doi.org/10.1890/1051-0761(1997)007[0158:SRMAAP]2.0.CO;2.
  37. Sasakawa, M., Shimoyama, K., Machida, T., Tsuda, N., Suto, H., Arshinov, M., Davydov, D., Fofonov, A., Krasnov, O., Saeki, T., Koyama, Y., & Maksyutov, S. (2010). Continuous measurements of methane from a tower network over Siberia. Tellus Series B: Chemical and Physical Meteorology, 62, 403–416.  https://doi.org/10.1111/j.1600-0889.2010.00494.x.CrossRefGoogle Scholar
  38. Shim, C., Lee, J., & Wang, Y. (2013). Effect of continental sources and sinks on the seasonal and latitudinal gradient of atmospheric carbon dioxide over East Asia. Atmospheric Environment, 79, 853–860.  https://doi.org/10.1016/j.atmosenv.2013.07.055.CrossRefGoogle Scholar
  39. SIO, (2017). Scripps Institution of Oceanography. https://scripps.ucsd.edu/programs/keelingcurve/. Accessed 8 Sep 2016.
  40. Stellmes, M., Udelhoven, T., Röder, A., Sonnenschein, R., & Hill, J. (2010). Dryland observation at local and regional scale comparison of Landsat TM/ETM+ and NOAA AVHRR time series. Remote Sensing of Environment, 114, 2111–2125.  https://doi.org/10.1016/j.rse.2010.04.016.CrossRefGoogle Scholar
  41. Sun, B., Zhou, S., & Zhao, Q. (2003). Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115, 85–99.  https://doi.org/10.1016/S0016-7061(03)00078-8.CrossRefGoogle Scholar
  42. Terao, Y., Mukai, H., Nojiri, Y., Machida, T., Tohjima, Y., Saeki, T., & Maksyutov, S. (2011). Inter annual variability and trends in atmospheric methane over the western Pacific from 1994 to 2010. Journal of Geophysical Research-Atmospheres, 116(D14), 303.  https://doi.org/10.1029/2010JD015467.CrossRefGoogle Scholar
  43. Wada, A., Matsueda, H., Sawa, Y., Tsuboi, K., & Okubo, S. (2011). Seasonal variation of enhancement ratios of trace gases observed over 10 years in the western North Pacific. Atmospheric Environment, 45, 2129–2137.  https://doi.org/10.1016/j.atmosenv.2011.01.043.CrossRefGoogle Scholar
  44. Wang, H., Liu, G., & Gong, P. (2005). Use of cokriging to improve estimates of soil salt solute spatial distribution in the Yellow River delta. Acta Geographica Sinica, 60, 511–518.Google Scholar
  45. Wang, T., Shi, J., Jing, Y., Zhao, T., Ji, D., & Xiong, C. (2016). Correction: Combining XCO2 measurements derived from SCIAMACHY and GOSAT for potentially generating global CO2 maps with high spatiotemporal resolution. PLoS One, 11, e0148152.CrossRefGoogle Scholar
  46. WMO (2013). World Meteorological Organization. WDCGG data summary. WMO WDCGG No. 37, 2013.Google Scholar
  47. Yoshida, Y., Ota, Y., Eguchi, N., Kikuchi, N., Nobuta, K., Tran, H., Morino, I., & Yokota, T. (2011). Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the greenhouse gases observing satellite. Atmospheric Measurement Techniques, 4, 717–734.  https://doi.org/10.5194/amtd-3-4791-2010.CrossRefGoogle Scholar
  48. Zeng, Z., Lei, L., Guo, L., Zhang, L., & Zhang, B. (2013). Incorporating temporal variability to improve geostatistical analysis of satellite-observed CO2 in China. Chinese Science Bulletin, 58, 1948–1954.  https://doi.org/10.1007/s11434-012-5652-7.CrossRefGoogle Scholar
  49. Zhang, Y., Xu, M., Chen, H., & Adams, J. (2009). Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type geographical location and climate. Global Ecology and Biogeography, 18(3), 280–290.  https://doi.org/10.1111/j.1466-8238.2008.00442.x.
  50. Zhou, C., Shi, R., & Gao, W. (2013). Interpolation of XCO2 retrieved from GOSAT in China using fixed rank kriging. Paper presented at the Conference of the International Society for Optics and Photonics, 24–28 September 2013.  https://doi.org/10.1117/12.2020946.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Samereh Falahatkar
    • 1
    Email author
  • Seyed Mohsen Mousavi
    • 1
  • Manochehr Farajzadeh
    • 2
  1. 1.Environmental Science Department, Faculty of Natural Resource and Marine ScienceTarbiat Modares UniversityNoorIran
  2. 2.Department of GeographyUniversity of Tarbiat Modares UniversityTehranIran

Personalised recommendations