Determination of dominant sources of nitrate contamination in transboundary (Russian Federation/Ukraine) catchment with heterogeneous land use

  • Y. Vystavna
  • D. Diadin
  • V. Grynenko
  • V. Yakovlev
  • Y. Vergeles
  • F. Huneau
  • P. M. Rossi
  • J. Hejzlar
  • K. Knöller


Nitrate contamination of surface water and shallow groundwater was studied in transboundary (Russia/Ukraine) catchment with heterogeneous land use. Dominant sources of nitrate contamination were determined by applying a dual δ 15N–NO3 and δ 18O–NO3 isotope approach, multivariate statistics, and land use analysis. Nitrate concentration was highly variable from 0.25 to 22 mg L−1 in surface water and from 0.5 to 100 mg L−1 in groundwater. The applied method indicated that sewage to surface water and sewage and manure to groundwater were dominant sources of nitrate contamination. Nitrate/chloride molar ratio was added to support the dual isotope signature and indicated the contribution of fertilizers to the nitrate content in groundwater. Groundwater temperature was found to be an additional indicator of manure and sewerage leaks in the shallow aquifer which has limited protection and is vulnerable to groundwater pollution.


Nitrate isotopes Land use Multivariate statistics Ukraine Anthropogenic sources Seversky Donets 



This research has been carried out in the framework of the Research Project CRP F33020 “Environmental isotopes methods to assess water quality issues in rivers impacted by groundwater discharges” and CRP F33021 “Evaluation of human impacts on water balance and nutrients dynamics in the transboundary Russia/Ukraine river basin” funded partly by the International Atomic Energy Agency (IAEA) and the O.M. Beketov National University of Urban Economy in Kharkiv. Authors thank Ms. Janine Halder (IAEA) for her valuable comments and suggestions.


  1. Amberger, A., & Schmidt, H. L. (1987). Naturliche Isotopengehalte von Nitat als Indikatoren fur dessen Herkunft. Geochimica et Cosmochimica Acta, 51, 2699–2705.CrossRefGoogle Scholar
  2. Birgand, F., Skaggs, R. W., Chescheir, G. M., & Gilliam, J. W. (2007). Nitrogen removal in streams of agricultural catchments—a literature review. Critical Reviews in Environmental Science and Technology, 37, 381–487.CrossRefGoogle Scholar
  3. Bohkle, J. K., & Denver, J. M. (1995). Combined use of groundwater dating, chemical and isotopic analysis to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resource Research, 31(9), 2319–2339.CrossRefGoogle Scholar
  4. Böttcher, J., Strebel, O., Voerkelius, S., & Schmidt, H.-L. (1990). Using isotope fractionation of nitrate–nitrogen and nitrate–oxygen for evaluation of microbial denitrification in sandy aquifer. Journal of Hydrology, 114, 413–424.CrossRefGoogle Scholar
  5. Canter, L. W. (1997). Nitrates in groundwater. New York: CRC Press Inc..Google Scholar
  6. Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., & Hilkert, A. (2002). Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry, 74, 4905–4912.CrossRefGoogle Scholar
  7. Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., et al. (2001). Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16, 659–718.CrossRefGoogle Scholar
  8. Curt, M. D., Aguado, D., Sanchez, G., Begiriego, M., & Fernandez, J. (2004). Nitrogen isotope ratios of synthetic and organic sources of nitrate water contamination in Spain. Water Air and Soil Pollution, 151, 135–142.CrossRefGoogle Scholar
  9. Dmytrenko, T.V. (2004). Increasing ecological safety of spring waters use on the example of the Kharkiv region. Manuscript of PhD thesis. Ukrainian research Institute of the Ecological Problems. Kharkiv, Ukraine (in Russian).Google Scholar
  10. ECO (2015). Ecological and environmental passport of the Kharkiv region. Published by the Ministry of the Environmental Protection of Ukraine (in Ukrainian).Google Scholar
  11. European Commission (2013). Report from the Commission to the Council and the European Parliament on the implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on member state reports for the period 2008–2011, Brussels.Google Scholar
  12. Favreau, G., Cappelaere, B., Massuel, S., Leblanc, M., Boucher, M., Boulain, N., et al. (2009). Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resource Research, 45 (7), art. no. W00A16.Google Scholar
  13. Flipo, N., Even, S., Poulin, M., Thery, S., & Ledoux, E. (2007). Modelling nitrate fluxes at the catchment scale using the integrated tool CAWAQS. Science of the Total Environment, 375, 69–79.CrossRefGoogle Scholar
  14. Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., et al. (2004). Nitrogen cycles: past, present and future. Biogeochemistry, 70(2), 153–226.CrossRefGoogle Scholar
  15. Gambrell, R. P., & Patrick Jr., W. H. (1978). Chemical and microbiological properties of anaerobic soils and sediments. In D. D. Hook & R. M. H. Crawford (Eds.), Plant life in anaerobic environments (pp. 375–423). Michigan: Ann Arbor Science Publishers.Google Scholar
  16. Global Land Cover Europe (2000). European Environmental Agency.
  17. Gooddy, D. C., Macdonald, D. M. J., Lapworth, D. J., Bennett, S. A., & Griffiths, K. J. (2014). Nitrogen sources, transport and processing in peri-urban floodplains. Science of the Total Environment, 494–495, 28–38.CrossRefGoogle Scholar
  18. Handbook of hydrologist (1979). V.M. Maximov (Ed.). Leningrad: Nedra (in Russian).Google Scholar
  19. Katz, B. G., Eberts, S. M., & Kauffman, L. J. (2011). Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: a review and examples from principal aquifers in the United States. Journal of Hydrology, 397(3–4), 151–166.CrossRefGoogle Scholar
  20. Kaushal, S. S., Groffman, P. M., Band, L. E., Elliott, E. M., Shields, C. A., & Kendall, C. (2011). Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environmental Science and Technology, 45(19), 8225–8232.CrossRefGoogle Scholar
  21. Kendall, C. (1998). Tracing nitrogen sources and cycling in catchment. In C. Kendall & J. J. McDonnell (Eds.), Isotope tracers in catchment hydrology (pp. 519–576). Amsterdam: Elsevier.CrossRefGoogle Scholar
  22. Kendall, C., & McDonnell, J. J. (2003). Isotope tracers in catchment hydrology. Amsterdam: Elsevier.Google Scholar
  23. Kendall, C., Elliott, E.M., & Wankel, S.D. (2008). Tracing anthropogenic inputs of nitrogen to ecosystems. R.H. Michener, & K. Lajtka (Eds.). Stable isotopes in ecology and environmental science (pp. 375–449). Blackwell Publishing.Google Scholar
  24. Kopáček, J., Hejzlar, J., & Posch, M. (2013). Factors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900-2010. Environmental Science and Technology, 47, 6400–6407.Google Scholar
  25. Kopáček, J., Hejzlar, J., Porcal, P., & Posch, M. (2014). A mass-balance study on chloride fluxes in a large central European catchment during 1900–2010. Biogeochemistry, 120(1–3), 543–550.Google Scholar
  26. Jyväsjärvi, J., Marttila, H., Rossi, P. M., Ala-Aho, P., Olofsson, B., Nisell, J., et al. (2015). Climate-induced warming imposes a threat to north European spring ecosystems. Global Change Biology, 21, 4561–4569.CrossRefGoogle Scholar
  27. El Gaouzi Fatima-Zahra, J., Sebilo, M., Ribstein, P., Plagnes, V., Boeckx, P., Xue, D., et al. (2013). Using δ15N and δ18O values to identify sources of nitrate in karstic springs in the Paris basin (France). Applied Geochemistry, 35, 230–243.CrossRefGoogle Scholar
  28. Lehosmaa, K., Jyväsjärvi, J., Virtanen, R., Rossi, P. M., Rados, D., Chuzhekova, T., et al. (2016). Does habitat restoration enhance spring biodiversity and ecosystem functions? Hydrobiologia, in press.
  29. Lockhart, K. M., King, A. M., & Harter, T. (2013). Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. Journal of Contaminant Hydrology, 151, 140–154.CrossRefGoogle Scholar
  30. Mariotti, A., Landreau, A., & Simon, A. (1988). 15N biogeochemistry and natural denitrification process in groundwater: application to chalk aquifer of northern France. Geochimica et Cosmochimica Acta, 52(7), 1869–1878.CrossRefGoogle Scholar
  31. Matiatos, I. (2016). Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: a case study of Asopos basin (Central Greece). Science of the Total Environment, 541(15), 802–814.CrossRefGoogle Scholar
  32. Mayer, B., Bollwerk, S. M., Mansfeldt, T., Hütter, B., & Veizer, J. (2001). The oxygen isotope composition of nitrate generated by nitrification in acid forest floors. Geochimica et Cosmochimica Acta, 65, 2743–2756.CrossRefGoogle Scholar
  33. Michalski, G., Kolanowski, M., & Riha, K. M. (2015). Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts. Isotopes in Environmental and Health Studies, 51(3), 382–391.CrossRefGoogle Scholar
  34. Mohammed, N., Celle-Jeanton, H., Huneau, F., Le Coustumer, P., Lavastre, V., Bertrand, G., et al. (2014). Isotopic and geochemical identification of main groundwater supply sources to an alluvial aquifer, the Allier River valley (France). Journal of Hydrology, 508, 181–196.CrossRefGoogle Scholar
  35. Mueller, C., Krieg, R., Merz, R., & Knöller, K. (2015). Regional nitrogen dynamics in the TERENO Bode River catchment, Germany, as constrained by stable isotope patterns. Isotopes in Environmental and Health Studies, 52(1–2), 16–74.Google Scholar
  36. Nestler, A., Berglund, M., Accoe, F., Duta, S., Xue, D., Boeckx, P., et al. (2011). Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies. Environmental Science and Pollution Research, 18(4), 519–533.CrossRefGoogle Scholar
  37. Nisi, B., Raco, B., & Dotsika, E. (2016). Groundwater contamination studies by environmental isotopes: a review. Handbook of Environmental Chemistry, 40, 115–150.Google Scholar
  38. NRDW (2013): National report on drinking water quality and supply in 2013. Published by Ministry of the Regional Development, Building and Municipal Economy of Ukraine, Kiev (in Ukrainian).Google Scholar
  39. NRSE (2013): National report on the state of the environment in 2013. Published by Ministry of Ecology and Environment Protection of Ukraine, Kiev (in Ukrainian).Google Scholar
  40. NSTU (2010): National standard on the drinking water quality for springs and wells (in Ukrainian).Google Scholar
  41. Pastern–Zapata, E., Ledesma–Ruiz, R., Harter, T., Ramirez, A. I., & Mahlknecht, J. (2014). Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi–tracer approach. Science of the Tot Environment, 470–471, 855–864.CrossRefGoogle Scholar
  42. Report (2007). Supplementary report to geological map of Ukraine, scale 1:200 000, sheets M-37-XIII (Belgorod), M-37-XIX (Kharkiv). Geological Survey of Ukraine. Printed in Kyiv (in Ukrainian).Google Scholar
  43. Rolston, D.E., Fogg, G.E., Decker, D.L., & Louie, D.T. (1994). Nitrogen isotopes ratios of natural and anthropogenic nitrate in the subsurface. Proceedings of the XXV Congress of the International Association of Hydrogeologists. Adelaide, Australia, 21–25 November 1994.Google Scholar
  44. Rossi, P., Marttila, H., Jyvasjarvi, J., Ala–aho, P., Isokangas, E., Muotka, T., et al. (2015). Environmental conditions of boreal springs explained by capture zone characteristics. Journal of Hydrology, 531, 992–1002.CrossRefGoogle Scholar
  45. Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., & Böhlke, J. K. (2001). A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry, 73, 4145–4153.CrossRefGoogle Scholar
  46. Soares, M. I. M. (2000). Biological denitrification of groundwater. Water Air and Soil Pollution, 123, 183–193.CrossRefGoogle Scholar
  47. Schmidt, C. E., Robinson, R. S., Fields, L., & Nixon, S. W. (2016). Changes to nitrate isotopic composition of wastewater treatment effluent and rivers after upgrades to tertiary treatment in the Narragansett Bay watershed, RI. Marine Pollution Bulletin, 104(1–2), 61–69.CrossRefGoogle Scholar
  48. Spalding, R. F., & Exner, M. E. (1993). Occurrence of nitrate in groundwater—a review. Journal of Environmental Quality, 22(3), 392–402.CrossRefGoogle Scholar
  49. Stoewer, M. M., Knöller, K., & Stumpp, C. (2015). Tracing freshwater nitrate sources in pre-alpine groundwater catchments using environmental tracers. Journal of Hydrology, 524, 753–767.CrossRefGoogle Scholar
  50. Urresti–Estala, B., Vadillo–Perez, I., Jimenez–Gavilan, P., Soler, A., Sanchez–Garcia, D., & Carrasco–Cantos, F. (2015). Application of stable isotopes (δ34S-SO4, δ18O-SO4, δ15N-NO3, δ18O-NO3) to determine natural background and contamination sources in the Guadalhorce River Basin (southern Spain). Science of the Tot Environment, 506–507, 46–57.CrossRefGoogle Scholar
  51. Van Meter, K. J., Basu, N. B., Veenstra, J. J., & Burras, C. I. (2016). The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environmental Research Letters, 11, 035014.CrossRefGoogle Scholar
  52. Vasenko, O.G., Lungu, M.L., Iljevska, Y.A., & Klymov, O.V. (2006). The integrated field research of environmental conditions of water bodies of the Udy water basins (sub-basin of the Siverskiy Dinets River). Kharkiv: “Rayder” Publishing (in Ukrainian).Google Scholar
  53. Vergeles, Y., Vystavna, Y., Ishchenko, A., Rybalka, I., Marchand, L., & Stolberg, F. (2015). Assessment of treatment efficiency of constructed wetlands in East Ukraine. Ecological Engineering, 83, 159–168.CrossRefGoogle Scholar
  54. Vitòria, L., Otero, N., Soler, A., & Canals, A. (2004). Fertilizer characterization: isotopic data (N, S, O, C, and Sr). Environmental Science and Technology, 38(12), 3254–3262.CrossRefGoogle Scholar
  55. Vogel, J. C., Talma, A. S., & Heaton, T. H. E. (1981). Gaseous nitrogen as evidence for denitrification in groundwater. Journal of Hydrology, 50, 191–200.CrossRefGoogle Scholar
  56. Vystavna, Y., Huneau, F., Motelica-Heino, M., Le Coustumer, P., Vergeles, Y., & Stolberg, F. (2012a). Monitoring and flux determination of trace metals in rivers of the Seversky Donets basin (Ukraine) using DGT passive samplers. Environmental Earth Sciences, 65, 1715–1725.CrossRefGoogle Scholar
  57. Vystavna, Y., Huneau, F., Schafer, J., Motelica-Heino, M., Blanc, G., Larrose, A., et al. (2012b). Distribution of trace elements in waters and sediments of the Seversky Donets transboundary watershed (Kharkiv region, Eastern Ukraine). Applied Geochemistry, 27(10), 2077–2087.CrossRefGoogle Scholar
  58. Vystavna, Y., Le Coustumer, P., & Huneau, F. (2013). Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters. Environmental Monitoring and Assessment, 185(4), 3581–3601.CrossRefGoogle Scholar
  59. Vystavna, Y., Yakovlev, V., Diadin, D., Vergeles, Y., & Stolberg, F. (2015). Hydrochemical characteristics and water quality assessment of surface and ground waters in the transboundary (Russia/Ukraine) Seversky Donets basin. Environmental Earth Sciences, 74(1), 585–596.CrossRefGoogle Scholar
  60. Wakida, F. T., & Lerner, D. N. (2005). Non-agricultural sources of groundwater nitrate: a review and case study. Water Research, 39, 3–16.CrossRefGoogle Scholar
  61. Wassenaar, I. L. (1995). Evaluation of the origin and fate of nitrate in the Abbotsford aquifer using the isotopes of 15N and 18O in NO3−. Applied Geochemistry, 10, 391–405.CrossRefGoogle Scholar
  62. WHO (2008). Guidelines for drinking water quality (3rd edition) World Health Organization, Geneva.Google Scholar
  63. WHO (2011). Nitrate and nitrite in drinking water. Background document for development of WHO guidelines for drinking water quality. Published in Geneva, Switzerland by WHO Press, 2011.Google Scholar
  64. Widory, D., Petelet–Giraud, E., Brenot, A., Bronders, J., Tirez, K., & Boeckx, P. (2013). Improving the management of nitrate pollution in water by the use of isotope monitoring: the δ15N, δ18O and δ11B triptych. Isotopes in Environmental and Health Studies, 49(1), 29–47.CrossRefGoogle Scholar
  65. Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., et al. (2009). Present limitations and future prospects of stable isotope methods for nitrate source identification in surface–and groundwater. Water Research, 43, 1159–1170.CrossRefGoogle Scholar
  66. Yakovlev, V., Vystavna, Y., Diadin, D., & Vergeles, Y. (2015). Nitrates in springs and rivers of East Ukraine: distribution, contamination and fluxes. Applied Geochemistry, 53, 71–78.CrossRefGoogle Scholar
  67. Yue, F. J., Li, S.-T., Liu, C.-Q., Zhao, Z.-Q., & Hu, S. (2013). Using dual isotopes to evaluate sources and transformation of nitrogen in the Liao River, northeast China. Applied Geochemistry, 36, 1–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Biology Centre CASInstitute of HydrobiologyČeské BudějoviceCzech Republic
  2. 2.Department of Environmental Engineering and ManagementO.M. Beketov National University of Urban Economy in KharkivKharkivUkraine
  3. 3.Department of the ManagementO.M. Beketov National University of Urban Economy in KharkivKharkivUkraine
  4. 4.Water Quality Laboratory “PLAYA”KharkivUkraine
  5. 5.Laboratoire d’HydrogéologieUniversité de Corse Pascal PaoliCorteFrance
  6. 6.CNRS, UMR 6134 SPECorteFrance
  7. 7.Water Resources and Environmental Engineering Research UnitUniversity of OuluOuluFinland
  8. 8.Helmholtz Centre for Environmental Research – UFZ, Department of Catchment HydrologyHalleGermany

Personalised recommendations