Trace elements in feathers and eggshells of brown booby Sula leucogaster in the Marine National Park of Currais Islands, Brazil

  • Natiely Natalyane DolciEmail author
  • Fabian Sá
  • Eunice da Costa Machado
  • Ricardo Krul
  • Renato Rodrigues Neto


Levels of trace elements were investigated in feathers of 51 adults and 47 eggshells of brown boobies Sula leucogaster from one bird colony in the Marine National Park of Currais Islands, Brazil, between December 2013 and October 2014. Average concentrations (μg g−1, dry weight) in feathers and eggshells, respectively, were Al 50.62–9.58, As 0.35–2.37, Cd 0.05–0.03, Co 0.38–2.1, Cu 15.12–0.99, Fe 47.47–22.92, Mg 815.71–1116.92, Ni 0.29–11.85, and Zn 94.16–1.98. In both arrays, the average concentration of Mg was the highest among all the elements analyzed, while the lowest was recorded for Cd. As and Ni presented levels at which biological impacts might occur. Zn concentrations were higher than those considered normal in other organs. Levels of Al, Fe, Cu, Zn, and Cd were higher in feathers, whereas higher contents of Mg, Co, Ni, and As occurred in eggshells. The comparison between the elements in eggshells collected at different seasons showed no significant difference (p > 0.05) due, probably, to the lack of temporal variation on foraging behavior and/or on bioavailability of trace elements. Metals and arsenic in feathers and eggshells were mostly not correlated. Future studies on Paraná coast should focus on the speciation of the elements, especially As, Ni, and Zn, which proved to be a possible problem for the environment and biota. It is necessary to investigate both matrices, shell and internal contents of the eggs, in order to verify if the differences previously reported in other studies also occur in eggs of brown boobies in the Marine National Park of Currais Islands.


Seabirds Contamination Metals Sulidae Marine National Park of Currais Islands Subtropical coastal systems 



The authors are grateful to Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support to N. N. Dolci; Chico Mendes Institute for Biodiversity Conservation for the license to conduct this research (authorization number: 43949) and Funding Agency of Paraná State (Fundação Araucária) and CNPq for the grants to E. C. Machado. Finally, we gratefully acknowledge the feedback provided by anonymous referees.


  1. Abduljaleel, S. A., Shuhaimi Othman, M., & Babji, A. (2011). Variation in trace elements levels among chicken, quail, Guinea fowl and pigeon eggshell and egg content. Research Journal of Environmental Toxicology, 5, 301–308.CrossRefGoogle Scholar
  2. Abouzeid, A. M. (2008). Physical and thermal treatment of phosphate ores—an overview. International Journal of Mineral Processing, 85, 59–84.CrossRefGoogle Scholar
  3. Agency for Toxic Substances and Disease Registry (ATSDR). (2005a). Toxicological profile for nickel (pp. 1–351). Atlanta: US Public Health Service.Google Scholar
  4. Agency for Toxic Substances and Disease Registry (ATSDR). (2005b). Toxicological profile for zinc (pp. 1–307). Atlanta: US Public Health Service.Google Scholar
  5. Agency for Toxic Substances and Disease Registry (ATSDR). (2007). Toxicological profile for arsenic (pp. 1–499). Atlanta: US Public Health Service.Google Scholar
  6. Angeli, J. L. F., Trevizani, T. H., Ribeiro, A., Machado, E. C., Figueira, R. C. L., Fraenzle, S., & Wuenschmann, S. (2013). Arsenic and other trace elements in two catfish species from Paranaguá Estuarine Complex, Paraná, Brazil. Environmental Monitoring and Assessment, 185, 8333–8342.CrossRefGoogle Scholar
  7. Barbieri, E., Passos, E. A., Filippini, A., dos Santos, I. S., & Garcia, C. A. B. (2010). Assessment of trace metal concentration in feathers of seabird (Larus dominicanus) sampled in the Florianopolis, SC, Brazilian coast. Environmental Monitoring and Assessment, 169, 631–638.CrossRefGoogle Scholar
  8. Bowen, H. J. M. (1979). Environmental chemistry of the elements (p. 269). London: Academic Press.Google Scholar
  9. Burger, J. (1993). Metals in avian feathers: bioindicators of environmental pollution. Reviews of Environmental Contamination and Toxicology, 5, 203–311.Google Scholar
  10. Burger, J. (1996). Heavy metal and selenium levels in feathers of Franklin’s gulls in interior North America. The Auk, 113(2), 399–407.CrossRefGoogle Scholar
  11. Burger, J. (2002). Food chain differences affect heavy metals in bird eggs in Barnegat Bay, New Jersey. Environmental Research, 90, 33–39.CrossRefGoogle Scholar
  12. Burger, J. (2013). Temporal trends (1989-2011) in levels of mercury and other heavy metals in feathers of fledgling great egrets nesting in Barnegat Bay, NJ. Environmental Research, 122, 11–17.CrossRefGoogle Scholar
  13. Burger, J., & Gochfeld, M. (1985). Comparison of nine heavy metals in salt gland and liver of Great Scaup (Aythya marila), Black Duck (Anas rubripes) and Mallard (Anas platyrhynchos). Comparative Biochemistry and Physiology, 81, 287–292.CrossRefGoogle Scholar
  14. Burger, J., & Gochfeld, M. (1992). Heavy metal and selenium concentrations in Black Skimmers (Rynchops niger): gender differences. Archives of Environmental Contaminations and Toxicology, 23, 431–434.Google Scholar
  15. Burger, J., & Gochfeld, M. (2000). Metal levels in feathers of 12 species of seabirds from Midway Atoll in the northern Pacific Ocean. The Science of the Total Enrivonment, 257, 37–52.CrossRefGoogle Scholar
  16. Burger, J., & Gochfeld, M. (2003). Spatial and temporal patterns in metal levels in eggs of common terns (Sterna hirundo) in New Jersey. The Science of the Total Environment, 311, 91–100.CrossRefGoogle Scholar
  17. Burger, J., & Gochfeld, M. (2004). Marine birds as sentinels of environmental pollution. EcoHealth, 1, 263–274.CrossRefGoogle Scholar
  18. Burger, J., Bowman, R., Woolfenden, G. E., & Gochfeld, M. (2004). Metal and metalloid concentrations in the eggs of threatened Florida scrub-jays in suburban habitat from south-central Florida. Science of the Total Environment, 328, 185–193.CrossRefGoogle Scholar
  19. Burger, J., Gochfeld, M., Jeitner, C., Burke, S., Volz, C. D., Snigaroff, F., Snigaroff, D., Shukla, T., & Shukla, S. (2009). Mercury and other metals in eggs and feathers of glaucous-winged gulls (Larus glaucescens) in the Aleutians. Environmental Monitoring and Assessment, 152, 179–194.CrossRefGoogle Scholar
  20. Burguera, M., & Burguera, J. L. (1993). Flow injection–electrothermal atomic absorption spectrometry for arsenic speciation using the Fleitmann reaction. Journal of Analytical Atomic Spectrometry, 8(2), 229–233.CrossRefGoogle Scholar
  21. Cain, B. W., Sileo, L., Franson, J. C., & Moore, J. (1983). Effects of dietary cadmium on mallard ducklings. Environmental Research, 32, 286–297.CrossRefGoogle Scholar
  22. Castello, B. F. L (2010). Avaliação dos teores de As, Cu, Cd, Ni e Zn em ostras Crassostrea rhizophorae (Guilding, 1828), nas baías de Paranaguá e Guaratuba, Paraná. 67 p. Dissertação (Pós–Graduação em Sistemas Costeiros e Oceânicos), Universidade Federal do Paraná, Brasil.Google Scholar
  23. Cherel, Y., & Klages, N. (1998). A review of the food of albatrosses. In R. Graham & R. Gales (Eds.), Albatross biology and conservation (pp. 113–136). Chipping Norton: Surrey Beatty.Google Scholar
  24. Choueri, R. B., Cesar, A., Torres, R. J., Abessa, D. M. S., Morais, R. D., Pereira, C. D. S., Nascimento, M. R. L., Mozeto, A. A., Riba, I., & Delvalls, T. A. (2009). Integrated sediment quality assessment in Paranaguá estuarine system, southern Brazil. Ecotoxicology and Environmental Safety, 72, 1824–1831.CrossRefGoogle Scholar
  25. Dauwe, T., Bervoets, L., Blust, R., Pinxten, R., & Eens, M. (2000). Can excrement and feathers of nestling songbirds be used as biomonitors for heavy metals pollution? Archives of Environmental Contamination and Toxicology, 39, 541–546.CrossRefGoogle Scholar
  26. Dauwe, T., Bervoets, L., Pinxten, R., Blust, R., & Eens, M. (2003). Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Environmental Pollution, 124, 429–436.CrossRefGoogle Scholar
  27. Eisler, R. (1981). Trace metal concentrations in marine organisms. New York: Pergamon Press.Google Scholar
  28. Eisler, R. (1988). Arsenic hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service, Contaminant Hazard Reviews, Biological Report 85 (1.12), Laurel, MD.Google Scholar
  29. Eisler, R. (1993). Zinc hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service, Contaminant Hazard Reviews, Biological Report 10 (26), Laurel, MD.Google Scholar
  30. Eisler, R. (1998a). Copper hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Geological Survey, Contaminant Hazard Reviews, Biological Science Report 1997–0002 (33), Laurel, MD.Google Scholar
  31. Eisler, R. (1998b). Nickel hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Geological Survey, Contaminant Hazard Reviews, Biological Science Report 1998–0001 (34), Laurel, MD.Google Scholar
  32. Environment Division, Antigua and Barbuda, The Barbuda Council. (2009). Codrington Lagoon National Park Barbuda. Management Plan 2009–2019. 76p.Google Scholar
  33. Ferreira, A. P. (2010). Trace metals analysis in brown booby (Sula leucogaster) collected from Ilha Grande Bay, Rio de Janeiro, Brazil. Uniandrade Revista, 11(2), 41–53.CrossRefGoogle Scholar
  34. Furness, R. W. (1996). Cadmium in birds. In W. N. Beyer, G. H. Heinz, & A. W. Redmom-Norwood (Eds.), Environmental contaminants in wildlife: interpreting tissues concentrations (pp. 389–404). Boca Raton: Lewis Press.Google Scholar
  35. Furness, R. W., & Monaghan, P. (1987). Seabird ecology. New York: Chapman & Hall.Google Scholar
  36. Gochfeld, M., & Burger, J. (1998). Temporal trends in metal levels in eggs of the endangered Roseate Tern (Sterna dougallii) in New York. Environmental Research, 77, 36–42.CrossRefGoogle Scholar
  37. Kim, J., & Koo, T. H. (2008). Heavy metal distribution in chicks of two heron species from Korea. Archives of Environmental Contamination and Toxicology, 54, 740–747.CrossRefGoogle Scholar
  38. Kim, J., & Oh, J. (2015). Comparison of trace element concentrations between chick and adult black-tailed Gulls (Larus crassirostris). Bulletin of Environmental Contamination and Toxicology, 94, 727–731.CrossRefGoogle Scholar
  39. Kolm, H. E., Mazzuco, R., Souza, P. S. A., Schoenenberger, M. F., & Pimentone, M. R. (2002). Spatial variation of bacteria in surface water of Paranaguá and Antonina Bays, Paraná, Brazil. Brazilian Archives of Biology and Technology, 35, 27–34.CrossRefGoogle Scholar
  40. Krul, R. (2004). Aves marinhas costeiras do Paraná. In J. O. Branco (Org). Aves marinhas e insulares brasileiras: bioecologia e conservação (pp. 37–56). Itajaí: Univali Editora.Google Scholar
  41. Lam, J. C. W., Tanabe, S., Wong, B. S. F., & Lam, P. K. S. (2004). Trace element residues in eggs of little egret (Egretta garzetta) and blackcrowned night heron (Nycticorax nycticorax) from Hong Kong, China. Marine Pollution Bulletin, 48, 390–396.CrossRefGoogle Scholar
  42. Lam, J. C. W., Tanabe, S., Lam, M. H. W., & Lam, P. K. S. (2005). Risk to breeding success of waterbirds by contaminants in Hong Kong: evidence from trace elements in eggs. Environmental Pollution, 135, 481–490.CrossRefGoogle Scholar
  43. Lautert, L. F. C. S. Á. F., Machado, E. C., Brandini, N., Marone, E., Noernberg, M. A., & Mauro, C. (2006). Diagnosis and environmental planning for Paranaguá-PR-Brazil. Journal of Coastal Research, Special Issue 39, 966–969s.Google Scholar
  44. Leach Jr., R. M., Wang, K. W., & Baker, D. E. (1979). Cadmium and the food chain: the effect of dietary cadmium on tissue composition in chicks and laying hens. The Journal of Nutrition, 109, 437–443.Google Scholar
  45. Liebzeit, G., Brepohl, D., Rizzi, J., Guebert, F., Krome, M., Machado, E., & Pijanowska, U. (2011). DDT in biota of Paranaguá Bay, Southern Brazil: recent input and rapid degradation. Water Air and Soil Pollution, 220, 181–188.CrossRefGoogle Scholar
  46. Mansouri, B., Hoshyari, E., Pourkhabbaz, A., & Babaei, H. (2012). Assessment of nickel levels in feathers of two bird species from southern Iran. Podoces, 7(1/2), 66–70.Google Scholar
  47. Marone, E., Machado, E. C., Lopes, R. M., & Silva, E. T. (2000). Paranaguá Bay Estuarine Complex, Paraná State. In V. Dupra, S. V. Smith, J. I. M. Crossland, & C. J. Crossland (Eds.), Estuarine systems of the South American region: carbon, nitrogen and phosphorus fluxes (pp. 26–33). Texel: LOICZ Reports and Studies, 15.Google Scholar
  48. Metcheva, R., Yurukova, L., Teodorova, S., & Nikolova, E. (2006). The penguin feathers as bioindicator of Antarctica environmental state. Science of Total Environment, 362, 259–265.CrossRefGoogle Scholar
  49. Metcheva, R., Yurukova, L., & Teodorova, S. (2011). Biogenic and toxic elements in feathers, eggs, and excreta of Gentoo penguin (Pygoscelis papua ellsworthii) in the Antarctic. Environmental Monitoring and Assessment, 182, 571–585.CrossRefGoogle Scholar
  50. Mirsanjari, M. M., Sheybanifar, F., & Arjmand, F. (2014). The study of Forest Hara Biosphere Reserve in coast of Persian Gulf and the importance of heavy metal accumulation; case study: feathers of great cormorant. Bioscience, 6(2), 159–160.Google Scholar
  51. Moreno, R., Jover, L., Diez, C., & Sanpera, T. (2011). Seabird feathers as monitors of the levels and persistence of heavy metal pollution after the Prestige oil spill. Environmental Pollution, 159, 2454–2460.CrossRefGoogle Scholar
  52. Muirhead, S. J., & Furness, R. W. (1988). Heavy metal concentrations in the tissues of seabirds from Gough Island, South Atlantic Ocean. Marine Pollution Bulletin, 19(6), 278–283.CrossRefGoogle Scholar
  53. Nelson, J. B. (1978). The Sulidae: gannets and boobies. Oxford: Oxford University Press.Google Scholar
  54. Noernberg, M. A. (2001). Processos morfodinâmicos no Complexo Estuarino de Paranaguá: um estudo utilizando dados Landsat–TM e medições in situ. 118p. Tese (Doutorado em Geologia Ambiental), Universidade Federal do Paraná, Curitiba.Google Scholar
  55. Outridge, P. M., & Scheuhammer, A. M. (1993). Bioaccumulation and toxicology of nickel: implications for wild mammals and birds. Environmental Reviews, 1, 172–197.CrossRefGoogle Scholar
  56. Sá, F. (2003). Distribuição e fracionamento de contaminantes nos sedimentos superficiais e atividades de dragagem no Complexo Estuarino da Baía de Paranaguá. 93 p. Dissertação (Mestrado em Geologia), Universidade Federal do Paraná, Curitiba.Google Scholar
  57. Sá, F., Machado, E. C., Angulo, R. J., Veiga, F. A., & Brandini, N. (2006). Arsenic and heavy metals in sediments near Paranaguá Port, southern Brazil. Journal of Coastal Research, Special Issue, 39, 1066–1068.Google Scholar
  58. Scherer, J. F. M., Scherer, A. L., Petry, M. V., & Valiati, V. H. (2015). Trace elements concentrations in buff-breasted sandpiper sampled in Lagoa do Peixe National Park, southern Brazil. Brazilian Journal of Biology, 75, 542–547.CrossRefGoogle Scholar
  59. Scheuhammer, A. M. (1987). The chronic toxicity of aluminium, cadmium, mercury and lead in birds: a review. Environmental Pollution, 46(4), 263–295.CrossRefGoogle Scholar
  60. Seco Pon, J. P., Beltrame, O., Marcovecchio, J., Favero, M., & Gandini, P. (2012). Assessment of trace metal concentrations in feathers of white-chinned petrels, Procellaria aequinoctialis, from the Patagonian shelf. Environmental and Pollution, 1(1), 29–37.Google Scholar
  61. Sell, J. L. (1975). Cadmium and the laying hen: apparent absorption, tissue distribution and virtual absence of transfer into eggs. Poultry Science, 54, 1674–1678.CrossRefGoogle Scholar
  62. Sepúlveda, M., & Gonzalez-Acuña, D. (2014). Comparación de metales pesados en la gaviota residente Larus dominicanus y la gaviota migratoria Leucophaeus pipixcan colectadas en Talcahuano, Chile. Archivos de Medicina Veterinaria, 46, 299–304.CrossRefGoogle Scholar
  63. Surai, P. F. (2002). Natural antioxidants in avian nutrition and reproduction. Nottingham: Nottingham University Press.Google Scholar
  64. Trefry, S. A., Diamond, A. W., Spencer, N. C., & Mallory, M. L. (2013). Contaminants in magnificent frigatebird eggs from Barbuda, West Indies. Marine Pollution Bulletin, 75, 317–321.CrossRefGoogle Scholar
  65. White, D. H., & Finley, M. T. (1978). Uptake and retention of dietary cadmium in mallard ducks. Environmental Research, 17, 53–59.CrossRefGoogle Scholar
  66. Woolson, E. A. (1975). Arsenical pesticides. Washington, DC, American Chemical Society Symposium Series 7.Google Scholar
  67. Yoda, K., Tomita, N., Mizutani, Y., Narita, A., & Niizuma, Y. (2012). Spatio-temporal responses of black-tailed gulls to natural and anthropogenic food resources. Marine Ecology Progress Series, 466, 249–259.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Natiely Natalyane Dolci
    • 1
    Email author
  • Fabian Sá
    • 2
  • Eunice da Costa Machado
    • 3
  • Ricardo Krul
    • 1
  • Renato Rodrigues Neto
    • 2
  1. 1.Center of Marine StudiesFederal University of ParanáPontal do ParanáBrazil
  2. 2.Federal University of Espírito Santo, Center of Human and Natural Sciences, Department of Oceanography and EcologyUniversity Campus GoiabeirasVitóriaBrazil
  3. 3.Institute of OceanographyFederal University of Rio GrandeRio GrandeBrazil

Personalised recommendations