Skip to main content
Log in

Elemental and carbonaceous characterization of TSP and PM10 during Middle Eastern dust (MED) storms in Ahvaz, Southwestern Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Middle Eastern dust (MED) storms carry large amounts of dust particles to the Southern and Western cities of Iran. This study aimed to characterize the elemental and carbonaceous composition of total suspended particles (TSP) and PM10 in Ahvaz, Iran. TSP and PM10 samples were collected using two separate high-volume air samplers. The sampling program was performed according to EPA guidelines and resulted in 72 samples. Twenty-eight elements and two carbonaceous components in TSP and PM10 were measured. Over the entire study period, the mean concentration (SD) of TSP and PM10 was 1548.72 μg/m3 (1965.11 μg/m3) and 1152.35 μg/m3 (1510.34 μg/m3), respectively. The order of concentrations of major species were Si > Al > Ca > OC > Na > B > Zn > Mn > K > Mg and Si > Ca > Al > Na > OC > B > K > Mn > Cu > Mg for TSP and PM10, respectively. Almost all elements (except for Cd, Cr, and Cu) and carbonaceous components (except for organic carbon) had dust days/non-dust days (DD/NDD) ratios higher than 1, implying that all components are somehow affected by dust storms. Crustal elements constituted the major portion of particles for both TSP and PM10 in both DDs and NDDs. The enrichment factor of elements such as Ca, Fe, K, Mg, Na, and Ti was near unity. Species such as Al, Ca, Fe, K, Na, Si, and EC had high correlation coefficients in both TSP and PM10 (except for EC). In conclusion, Ahvaz is exposed to high concentrations of TSP and PM10 during the MED period. Immediate actions must be planned to decrease the high concentrations of particulate matter in Ahvaz’s ambient air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

storm, Asian dust storm

DD:

Dust days

EC:

Elemental carbon

EF:

Enrichment factor

ICP:

Inductively coupled plasma

MED:

storms, Middle Eastern dust storms

NDD:

Non-dust days

OC:

Organic carbon

TGA:

Thermal gravimetric analysis

TSP:

Total suspended solids

References

  • Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A., & Galloo, J.-C. (2010). PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmospheric Research, 96(4), 612–625. https://doi.org/10.1016/j.atmosres.2010.02.008.

    Article  CAS  Google Scholar 

  • Basha, G., Phanikumar, D. V., Kumar, K. N., Ouarda, T. B. M. J., & Marpu, P. R. (2015). Investigation of aerosol optical, physical, and radiative characteristics of a severe dust storm observed over UAE. Remote Sensing of Environment, 169, 404–417. https://doi.org/10.1016/j.rse.2015.08.033.

    Article  Google Scholar 

  • Bell, J. M. (2014). Characterization, composition and source identification of Iraqi aerosols.

  • Cao, J. J., Lee, S. C., Zheng, X. D., Ho, K. F., Zhang, X. Y., Guo, H., Chow, J. C., & Wang, H. B. (2003). Characterization of dust storms to Hong Kong in April 1998. Water, Air, and Soil Pollution, 3, 213–229.

    Article  CAS  Google Scholar 

  • Cheng, M. T., Lin, Y. C., Chio, C. P., Wang, C. F., & Kuo, C. Y. (2005). Characteristics of aerosols collected in central Taiwan during an Asian dust event in spring 2000. Chemosphere, 61(10), 1439–1450.

    Article  CAS  Google Scholar 

  • Fermo, P., Piazzalunga, A., Vecchi, R., Valli, G., & Ceriani, M. (2006). A TGA/FT-IR study for measuring OC and EC in aerosol samples. Atmospheric Chemistry and Physics, 6, 255–266.

    Article  CAS  Google Scholar 

  • Fukushima, S., & Zhang, D. (2015). Comparison in size and elemental composition of dust particles deposited to the surface and suspended in the air on the southwest Japan coast. Atmospheric Environment, 118, 157–163.

    Article  CAS  Google Scholar 

  • Gonçalves, C., Alves, C., Nunes, T., Rocha, S., Cardoso, J., Cerqueira, M., Pio, C., Almeida, S. M., Hillamo, R., & Teinilä, K. (2014). Organic characterisation of PM10 in Cape Verde under Saharan dust influxes. Atmospheric Environment, 89, 425–432. https://doi.org/10.1016/j.atmosenv.2014.02.025.

    Article  Google Scholar 

  • Goudie, A. S. (2014). Desert dust and human health disorders. Environment International, 63, 101–113. https://doi.org/10.1016/j.envint.2013.10.011.

    Article  CAS  Google Scholar 

  • Goudie, A. S., & Middleton, N. J. (2006). Desert dust in the global system. Germany: Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-32355-4.

  • Grantz, D. A., Garner, J. H. B., & Johnson, D. W. (2003). Ecological effects of particulate matter. Environment International, 29(2–3), 213–239.

    Article  CAS  Google Scholar 

  • Jen, Y.-H., Liu, Y.-C., Ie, I.-R., Yuan, C.-S., & Hung, C.-H. (2014). Source allocation of long-range Asian dusts transportation across the Taiwan Strait by innovative chemical-assisted identification methods. Advances in Meteorology, 2014, 10. https://doi.org/10.1155/2014/268037.

  • Jihua, T., Jingchun, D., Kebin, H., Yongliang, M., Fengkui, D., Yuan, C., & Jiamo, F. (2009). Chemical characteristics of PM2.5 during a typical haze episode in Guangzhou. Journal of Environmental Sciences, 21, 774–781.

    Article  Google Scholar 

  • Jiménez-Vélez, B., Detrés, Y., Armstrong, R. A., & Gioda, A. (2009). Characterization of African dust (PM2.5) across the Atlantic Ocean during AEROSE 2004. Atmospheric Environment, 43(16), 2659–2664.

    Article  Google Scholar 

  • Jochner, S., Markevych, I., Beck, I., Traidl-Hoffmann, C., Heinrich, J., & Menzel, A. (2015). The effects of short- and long-term air pollutants on plant phenology and leaf characteristics. Environmental Pollution, 206, 382–389. https://doi.org/10.1016/j.envpol.2015.07.040.

    Article  CAS  Google Scholar 

  • Kang, E., Han, J., Lee, M., Lee, G., & Kim, J. C. (2013). Chemical characteristics of size-resolved aerosols from Asian dust and haze episode in Seoul Metropolitan City. Atmospheric Research, 127, 34–46.

    Article  CAS  Google Scholar 

  • Kang, H. J., Chang, Y.-H., Na, H.-R., Baek, M. J., Kim, H. J., Kang, B. S., Eah, K.-Y., & SangYun, K. (2009). Korean version of mini-mental state examination and clinical dementia rating scale sum of boxes scores in staging the dementia. Alzheimer’s and Dementia, 5(4, Supplement), 292. https://doi.org/10.1016/j.jalz.2009.04.414.

    Article  Google Scholar 

  • Kang, J.-H., Keller, J. J., Chen, C.-S., & Lin, H.-C. (2012). Asian dust storm events are associated with an acute increase in pneumonia hospitalization. Annals of Epidemiology, 22(4), 257–263. https://doi.org/10.1016/j.annepidem.2012.02.008.

    Article  Google Scholar 

  • Khan, M. B., Masiol, M., Formenton, G., Di Gilio, A., de Gennaro, G., Agostinelli, C., & Pavoni, B. (2016). Carbonaceous PM2.5 and secondary organic aerosol across the Veneto region (NE Italy). Science of the Total Environment, 542(Part A), 172–181. https://doi.org/10.1016/j.scitotenv.2015.10.103.

    Article  CAS  Google Scholar 

  • Kushta, J., Kallos, G., Astitha, M., Solomos, S., Spyrou, C., Mitsakou, C., & Lelieveld, J. (2014). Impact of natural aerosols on atmospheric radiation and consequent feedbacks with the meteorological and photochemical state of the atmosphere. Journal of Geophysical Research Atmospheres, 119(3), 1463–1491. https://doi.org/10.1002/2013JD020714.

    Article  CAS  Google Scholar 

  • Lee, H., Kim, H., Honda, Y., Lim, Y.-H., & Yi, S. (2013). Effect of Asian dust storms on daily mortality in seven metropolitan cities of Korea. Atmospheric Environment, 79, 510–517. https://doi.org/10.1016/j.atmosenv.2013.06.046.

    Article  CAS  Google Scholar 

  • Leon, J.-F., & Legrand, M. (2003). Mineral dust sources in the surroundings of the north Indian Ocean. Geophysical Research Letters, 30(42), 1309–1312.

    Google Scholar 

  • Li, K.. (2015). Chemical speciation of PM2. 5 in Southwest Ohio. University of Cincinnati,

  • Li, P.-H., Wang, Y., Li, T., Sun, L., Yi, X., Guo, L.-Q., & Su, R.-H. (2015). Characterization of carbonaceous aerosols at Mount Lu in South China: implication for secondary organic carbon formation and long-range transport. Environmental Science and Pollution Research, 22(18), 14189–14199.

    Article  CAS  Google Scholar 

  • Liang, C.-S., Yu, T.-Y., Chang, Y.-Y., Syu, J.-Y., & Lin, W.-Y. (2013). Source apportionment of PM2. 5 particle composition and submicrometer size distribution during an Asian dust storm and non-dust storm in Taipei. Aerosol and Air Quality Research, 13, 545–554.

    CAS  Google Scholar 

  • Liu, Q., Liu, Y., Yin, J., Zhang, M., & Zhang, T. (2014). Chemical characteristics and source apportionment of PM10 during Asian dust storm and non-dust storm days in Beijing. Atmospheric Environment, 91, 85–94. https://doi.org/10.1016/j.atmosenv.2014.03.057.

    Article  CAS  Google Scholar 

  • Lv, B., Zhang, B., & Bai, Y. (2016). A systematic analysis of PM 2.5 in Beijing and its sources from 2000 to 2012. Atmospheric Environment, 124, 98–108.

    Article  CAS  Google Scholar 

  • Ma, C.-J., Kang, G.-U., Kasahara, M., & Tohno, S. (2014). Chemical properties of the individual Asian dust particles clarified by micro-PIXE analytical system. Asian Journal of Atmospheric Environment (AJAE), 8(3), 154–161.

    Article  Google Scholar 

  • Ma, Q., Liu, Y., Liu, C., Ma, J., & He, H. (2012). A case study of Asian dust storm particles: chemical composition, reactivity to SO 2 and hygroscopic properties. Journal of Environmental Sciences, 24(1), 62–71.

    Article  CAS  Google Scholar 

  • Mohammadi, A., Azhdarpoor, A., Shahsavani, A., & Tabatabaee, H. (2016). Investigating the health effects of exposure to criteria pollutants using AirQ2. 2.3 in Shiraz, Iran. Aerosol and Air Quality Research, 16(4), 1035–1043.

    Article  CAS  Google Scholar 

  • Naimabadi, A., Ghadiri, A., Idani, E., Babaei, A. A., Alavi, N., Shirmardi, M., Khodadadi, A., Marzouni, M. B., Ankali, K. A., Rouhizadeh, A., & Goudarzi, G. (2016). Chemical composition of PM10 and its in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz, Iran. Environmental Pollution, 211, 316–324. https://doi.org/10.1016/j.envpol.2016.01.006.

    Article  CAS  Google Scholar 

  • Parashar, D. C., Gadi, R., Mandal, T. K., & Mitra, A. P. (2005). Carbonaceous aerosol emissions from India. Atmospheric Environment, 39, 7861–7871.

    Article  CAS  Google Scholar 

  • Pope III, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Air and Waste Management Association, 56, 709–742.

    Article  CAS  Google Scholar 

  • Prospero, J. M., & Lamb, J. P. (2003). African droughts and dust transport to the Caribbean: climate change and implications. Science, 302, 1024–1027.

    Article  CAS  Google Scholar 

  • Reid, E. A., Reid, J. S., Meier, M. M., Dunlap, M. R., Cliff, S. S., Broumas, A., Perry, K., & Maring, H. (2003). Characterization of African dust transported to Puerto Rico by individual particles and size segregated bulk analysis. Journal of Geophysical Reaseach, 108, 8591–8613.

    Article  Google Scholar 

  • Ridley, D. A., Heald, C. L., & Ford, B. (2012). North African dust export and deposition: a satellite and model perspective. Journal of Geophysical Research: Atmospheres, 117(D2), n/a-n/a, https://doi.org/10.1029/2011JD016794.

  • Sánchez de la Campa, A. M., Pio, C., de la Rosa, J. D., Querol, X., Alastuey, A., & González-Castanedo, Y. (2009). Characterization and origin of EC and OC particulate matter near the Doñana National Park (SW Spain). Environmental Research, 109(6), 671–681. https://doi.org/10.1016/j.envres.2009.05.002.

    Article  Google Scholar 

  • Satheesh, S., & Moorthy, K. K. (2005). Radiative effects of natural aerosols: a review. Atmospheric Environment, 39(11), 2089–2110.

    Article  CAS  Google Scholar 

  • Shahsavani, A., Naddafi, K., Haghighifard, N. J., Mesdaghinia, A., Yunesian, M., Nabizadeh, R., Arhami, M., Yarahmadi, M., Sowlat, M. H., & Ghani, M. (2012a). Characterization of ionic composition of TSP and PM10 during the Middle Eastern Dust (MED) storms in Ahvaz, Iran. Environmental Monitoring and Assessment, 184(11), 6683–6692.

    Article  CAS  Google Scholar 

  • Shahsavani, A., Naddafi, K., Jafarzade Haghighifard, N., Mesdaghinia, A., Yunesian, M., Nabizadeh, R., Arahami, M., Sowlat, M. H., Yarahmadi, M., Saki, H., Alimohamadi, M., Nazmara, S., Motevalian, S. A., & Goudarzi, G. (2012b). The evaluation of PM10, PM2.5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from April through September 2010. Journal of Arid Environments, 77, 72–83. https://doi.org/10.1016/j.jaridenv.2011.09.007.

    Article  Google Scholar 

  • Shen, Z., Cao, J., Arimoto, R., Han, Z., Zhang, R., Han, Y., Liu, S., Okuda, T., Nakao, S., & Tanaka, S. (2009). Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi'an, China. Atmospheric Environment, 43(18), 2911–2918.

    Article  CAS  Google Scholar 

  • Sowlat, M. H., Naddafi, K., Yunesian, M., Jackson, P. L., Lotfi, S., & Shahsavani, A. (2013). PM10 source apportionment in Ahvaz, Iran, using positive matrix factorization. Clean: Soil, Air, Water, 41(12), 1143–1151.

    CAS  Google Scholar 

  • Sowlat, M. H., Naddafi, K., Yunesian, M., Jackson, P. L., & Shahsavani, A. (2012). Source apportionment of total suspended particulates in an arid area in southwestern Iran using positive matrix factorization. Bulletin of Environmental Contamination and Toxicology, 88(5), 735–740.

    Article  CAS  Google Scholar 

  • Sun, Y., Zhuang, G., Wang, Y., Han, L., Guo, J., Dan, M., Zhang, W., Wang, Z., & Hao, Z. (2004). The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmospheric Environment, 38, 5991–6004.

    Article  CAS  Google Scholar 

  • Tao, J., Ho, K.-F., Chen, L., Zhu, L., Han, J., & Xu, Z. (2009). Effect of chemical composition of PM2.5 on visibility in Guangzhou, China, 2007 spring. Particuology, 7, 68–75.

    Article  CAS  Google Scholar 

  • Thornton, I., Ramsey, M., & Atkinson, N. (1995). Metals in the global environment: facts and misconceptions: ICME.

  • USEPA. (1997). National ambient air quality standards for particulate matter: final rule. Federal Register, 62(138), 38651–38701 US Environmental Protection Agency, Research Triangle Park.

    Google Scholar 

  • Vallero, D. (2014). Chapter 14—air pollution’s impact on ecosystems. In Fundamentals of air pollution (Fifth ed., pp. 341–368). Boston: Academic Press.

    Chapter  Google Scholar 

  • Wang, Q., Cao, J., Shen, Z., Tao, J., Xiao, S., Luo, L., He, Q., & Tang, X. (2013). Chemical characteristics of PM 2.5 during dust storms and air pollution events in Chengdu, China. Particuology, 11(1), 70–77.

    Article  CAS  Google Scholar 

  • Wang, R., Liu, B., Li, H., Zou, X., Wang, J., Liu, W., Cheng, H., Kang, L., & Zhang, C. (2017). Variation of strong dust storm events in Northern China during 1978–2007. Atmospheric Research, 183, 166–172. https://doi.org/10.1016/j.atmosres.2016.09.002.

    Article  Google Scholar 

  • Wang, X., Huang, J., Ji, M., & Higuchi, K. (2008). Variability of East Asia dust events and their long-term trend. Atmospheric Environment, 42(13), 3156–3165. https://doi.org/10.1016/j.atmosenv.2007.07.046.

    Article  CAS  Google Scholar 

  • Wang, Y.-C., & Lin, Y.-K. (2015). Mortality associated with particulate concentration and Asian dust storms in Metropolitan Taipei. Atmospheric Environment, 117, 32–40. https://doi.org/10.1016/j.atmosenv.2015.06.055.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhuang, G., Tang, A., Zhang, W., Sun, Y., Wang, Z., & An, Z. (2007). The evolution of chemical components of aerosols at five monitoring sites of China during dust storms. Atmospheric Environment, 41(5), 1091–1106.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhuang, G., Zhang, X., Huang, K., Xu, C., Tang, A., Chen, J., & An, Z. (2006). The ion chemistry, seasonal cycle, and sources of PM 2.5 and TSP aerosol in Shanghai. Atmospheric Environment, 40(16), 2935–2952.

    Article  CAS  Google Scholar 

  • Weinstein, J. P., Hedges, S. R., & Kimbrough, S. (2010). Characterization and aerosol mass balance of PM2.5 and PM10 collected in Conakry, Guinea during the 2004 Harmattan period. Chemosphere, 78(8), 980–988.

    Article  CAS  Google Scholar 

  • World Health Organization (2006). WHO air quality guidelines global update 2005. http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf. Accessed 19 Aug 2017.

  • World Health Organization. (2016). Ambient (outdoor) air pollution database, by country and city. http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/. Accessed 19 Aug 2017.

  • Yan, Y., Sun, Y., Ma, L., & Long, X. (2015). A multidisciplinary approach to trace Asian dust storms from source to sink. Atmospheric Environment, 105, 43–52. https://doi.org/10.1016/j.atmosenv.2015.01.039.

    Article  CAS  Google Scholar 

  • Yao, X., Chan, C. K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., & Ye, B. (2002). The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment, 36, 4223–4234.

    Article  CAS  Google Scholar 

  • Yu, H.-L., Yang, C.-H., & Chien, L.-C. (2013). Spatial vulnerability under extreme events: a case of Asian dust storm’s effects on children’s respiratory health. Environment International, 54, 35–44. https://doi.org/10.1016/j.envint.2013.01.004.

    Article  Google Scholar 

  • Zhang, Q., Zhang, J., Yang, Z., Zhang, Y., & Meng, Z. (2013). Impact of PM2.5 derived from dust events on daily outpatient numbers for respiratory and cardiovascular diseases in Wuwei, China. Procedia Environmental Sciences, 18, 290–298. https://doi.org/10.1016/j.proenv.2013.04.038.

    Article  CAS  Google Scholar 

  • Zhang, W., Zhuang, G., Guo, J., Xu, D., Wang, W., Baumgardner, D., Wu, Z., & Yang, W. (2010). Sources of aerosol as determined from elemental composition and size distributions in Beijing. Atmospheric Research, 95(2–3), 197–209. https://doi.org/10.1016/j.atmosres.2009.09.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the Tehran University of Medical Sciences (research project number #9742) and the Institute for Environmental Research (IER) for their financial support of the present study, and the Iranian Health Research Center for providing the sampling location

Funding

This study was funded by the Tehran University of Medical Sciences (research project number #9742) and the Institute for Environmental Research (IER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Naddafi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Research Highlights

• Mean concentrations of TSP and PM10 were 1548 and 1152 μg/m3 over the study period.

• Corresponding maximum 24-h values were 7535 and 5889 μg/m3, respectively.

• Crustal elements contributed to 44 and 55% of the total mass of TSP and PM10.

• Crustal elements were dominant in DDs, while this fraction decreased in NDDs.

• EFs near 1 for Ba, Ca, Fe, K, Mg, and Na suggested their possible crustal origin.

Electronic supplementary material

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavani, A., Yarahmadi, M., Hadei, M. et al. Elemental and carbonaceous characterization of TSP and PM10 during Middle Eastern dust (MED) storms in Ahvaz, Southwestern Iran. Environ Monit Assess 189, 462 (2017). https://doi.org/10.1007/s10661-017-6182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6182-1

Keywords

Navigation