Water quality comparison of secondary effluent and reclaimed water to ambient river water of southern Okinawa Island via biological evaluation

  • Hiroyuki Mano
  • Fumihiko Takeda
  • Tomokazu Kitamura
  • Seiichiro Okamoto
  • Yutaka Suzuki
  • Chang-Beom Park
  • Nobuhito Yasui
  • Kentarou Kobayashi
  • Yuji Tanaka
  • Naoyuki Yamashita
  • Mizuhiko Minamiyama
Article

Abstract

The objective of this work was to evaluate the biological effect of the secondary effluent (SE) of a wastewater treatment plant and reclaimed water treated via ultrafiltration (UF) followed by either reverse osmosis (RO) membrane filtration or nanofiltration (NF) to be used for environmental use by comparing the results of algal growth inhibition tests of concentrated samples of the SE and permeates of RO and NF with those of six rivers in southern Okinawa Island. Although the SE water had no adverse effects on the growth of the algae Pseudokirchneriella subcapitata, it could lead to water quality degradation of rivers in terms of its toxic unit value, whereas the use of RO and NF permeates would not lead to such degradation. The recharge of rivers, into which domestic wastewater and livestock effluents might be discharged in southern Okinawa Island, with reclaimed water subjected to advanced treatment could dilute the concentrations of chemicals that cause biological effects and improve the water quality of the rivers, based on the results of the bioassay using P. subcapitata. Comparing the results of bioassays of reclaimed water with those of the ambient water at a site might be effective in assessing the water quality of reclaimed water for environmental use at the site.

Keywords

Bioassay Ecological risk Feasibility study Water reclamation Water reuse 

Notes

Acknowledgements

We thank M. Harada for her kind assistance in conducting the bioassays. This research was supported by the Core Research for Evolutional Science and Technology (CREST), “Innovative Technology and Systems for Sustainable Water Use Research Area” of the Japan Science and Technology (JST) organization.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aguayo, S., Munoz, M. J., de la Torre, A., Roset, K., de la Pena, E., & Carballo, M. (2004). Identification of organic compounds and ecotoxicological assessment of sewage treatment plants (STP) effluents. Science of the Total Environment, 328(1–3), 69–81.CrossRefGoogle Scholar
  2. Boxall, A. B. A., Rudd, M. A., Brooks, B. W., Caldwell, D. J., Choi, K., Hickmann, S., Innes, E., Ostapyk, K., Staveley, J. P., Verslycke, T., Ankley, G. T., Beazley, K. F., Belanger, S. E., Berninger, J. P., Carriquiriborde, P., Coors, A., Deleo, P. C., Dyer, S. D., Ericson, J. F., Gagné, F., Giesy, J. P., Gouin, T., Hallstrom, L., Karlsson, M. V., Larsson, D. G., Lazorchak, J. M., Mastrocco, F., McLaughlin, A., McMaster, M. E., Meyerhoff, R. D., Moore, R., Parrott, J. L., Snape, J. R., Murray-Smith, R., Servos, M. R., Sibley, P. K., Straub, J. O., Szabo, N. D., Topp, E., Tetreault, G. R., Trudeau, V. L., & Van Der Kraak, G. (2012). Pharmaceuticals and personal care products in the environment: what are the big questions? Environmental Health Perspectives, 120(9), 1221–1229.CrossRefGoogle Scholar
  3. Buerge, I. J., Poiger, T., Müller, M. D., & Buser, H. R. (2003). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental Science and Technology, 37(4), 691–700.CrossRefGoogle Scholar
  4. Buerge, I. J., Poiger, T., Müller, M. D., & Buser, H. R. (2006). Combined sewer overflows to surface waters detected by the anthropogenic marker caffeine. Environmental Science and Technology, 40(13), 4096–4102.CrossRefGoogle Scholar
  5. Cao, N., Yang, M., Zhang, Y., Hu, J., Ike, M., Hirotsuji, J., Matsui, H., Inoue, D., & Sei, K. (2009). Evaluation of wastewater reclamation technologies based on in vitro and in vivo bioassays. Science of the Total Environment, 407(5), 1588–1597.CrossRefGoogle Scholar
  6. Davies, S. P., & Jackson, S. K. (2006). The biological condition gradient: a descriptive model for interpreting change in aquatic ecosystems. Ecological Applications, 16(4), 1251–1266.CrossRefGoogle Scholar
  7. Dayanthi, W. K. C. N., Shigematsu, T., Tanaka, H., Yamashita, N., Kato, K., & de Silva, V. (2006). Utilization of reclaimed wastewater for irrigation and urban activities in Okinawa Island. Japan Proceedings of the Water Environment Federation. doi: 10.2175/193864706783749981.
  8. Ginebreda, A., Muñoz, I., de Alda, M. L., Brix, R., López-Doval, J., & Barceló, D. (2010). Environmental risk assessment of pharmaceuticals in rivers: relationship between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environment International, 36(2), 153–162.CrossRefGoogle Scholar
  9. Grothe, D. R., Dickson, K. L., & Reed-Judkins, D. K. (1996). Whole effluent toxicity testing: an evaluation of methods and prediction of receiving system impacts. Pensacola: Society of Environmental Toxicology and Chemistry.Google Scholar
  10. Jackson, S., & Davis, W. (1994). Meeting the goal of biological integrity in water-resource programs of the U.S. Environmental Protection Agency. Journal of the North American Benthological Society, 13(4), 592–597.CrossRefGoogle Scholar
  11. Japan Ministry of the Environment (2006). Water and soil environmental management in Japan. https://www.env.go.jp/en/water/wq/pamph/pdf/full.pdf Accessed 5 Aug 2016.
  12. Kawahata, H., Ohta, H., Inoue, M., & Suzuki, A. (2004). Endocrine disrupter nonylphenol and bisphenol A contamination in Okinawa and Ishigaki Islands, Japan—without coral reefs and adjacent river mouths. Chemosphere, 55(11), 1519–1527.CrossRefGoogle Scholar
  13. Komori, K., & Suzuki, Y. (2009). Occurrence of pharmaceuticals and their environmental risk assessment of urban streams whose basins have different wastewater treatment. Journal of Japan Society on Water Environment, 32(3), 133–138 (In Japanese with English abstract).CrossRefGoogle Scholar
  14. Komori, K., Suzuki, Y., Minamiyama, M., & Harada, A. (2013). Occurrence of selected pharmaceuticals in river water in Japan and assessment of their environmental risk. Environmental Monitoring and Assessment, 185(6), 4529–4536.CrossRefGoogle Scholar
  15. Konishi, C., Howa, I., Nakada, N., Komori, K., Suzuki, Y., & Tanaka, H. (2006). Development of simultaneous analysis of pharmaceuticals in aqueous samples using LC-MS/MS. Environmental Engineering Research, 43, 73–82 (In Japanese with English abstract).Google Scholar
  16. Kouchi, R. (1995). Present status and problems of the riverine environment on Okinawajima Island. The Biological Magazine Okinawa, 33, 69–77 (In Japanese).Google Scholar
  17. Levine, A. D., & Asano, T. (2004). Recovering sustainable water from wastewater. Environmental Science and Technology, 38(11), 201A–208A.CrossRefGoogle Scholar
  18. Magdeburg, A., Stalter, D., & Oehlmann, J. (2012). Whole effluent toxicity assessment at a wastewater treatment plant upgraded with a full-scale post-ozonation using aquatic key species. Chemosphere, 88(8), 1008–1014.CrossRefGoogle Scholar
  19. Mano, H., Takeda, F., Kitamura, T., Okamoto, S., Kobayashi, K., Takabatake, H., Yamashita, N., & Tanaka, H. (2015). Evaluation of toxicity reduction of treated wastewater by UF and RO membrane technologies based on algal growth inhibition test and short term test on embryo and sac-fry stages of medaka. Journal of Japan Society of Civil Engineers, Ser. G (Environmental Research), 71(7), III_179–III_187 (In Japanese with English abstract).CrossRefGoogle Scholar
  20. Ministry of Health, Labour and Welfare (2011). Annual report on statistics of production by pharmaceutical industry in 2010. http://www.mhlw.go.jp/topics/yakuji/2010/nenpo/index.html Accessed 20 May 2012 (In Japanese).
  21. Nakada, N., Komori, K., Suzuki, Y., Konishi, C., Houwa, I., & Tanaka, H. (2007). Occurrence of 70 pharmaceutical and personal care products in Tone River basin in Japan. Water Science and Technology, 56(12), 133–140.CrossRefGoogle Scholar
  22. Narumiya, M., Nakada, N., Yamashita, N., & Tanaka, H. (2013). Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion. Journal of Hazardous Materials, 260, 305–312.CrossRefGoogle Scholar
  23. Quist-Jensen, C. A., Macedonio, F., & Drioli, E. (2015). Membrane technology for water production in agriculture: desalination and wastewater reuse. Desalination, 364(15), 17–32.CrossRefGoogle Scholar
  24. Ra, J. S., Kim, H. K., Chang, N. I., & Kim, S. D. (2007). Whole effluent toxicity (WET) tests on wastewater treatment plants with Daphnia magna and Selenastrum capricornutum. Environmental Monitoring and Assessment, 129(1), 107–113.CrossRefGoogle Scholar
  25. Ra, J. S., Lee, B. C., Chang, N. I., & Kim, S. D. (2008). Comparative whole effluent toxicity assessment of wastewater treatment plant effluents using Daphnia magna. Bulletin of Environmental Contamination and Toxicology, 80(3), 196–200.CrossRefGoogle Scholar
  26. Salgot, M., Huertas, E., Weber, S., Dott, W., & Hollender, J. (2006). Wastewater reuse and risk: definition of key objectives. Desalination, 187(1–3), 29–40.CrossRefGoogle Scholar
  27. Santos, L. H. M. L. M., Araújo, A. N., Fachini, A., Pena, A., Delerue-Matos, C., & Montenegro, M. C. B. S. M. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 175(1–3), 45–95.CrossRefGoogle Scholar
  28. Shigematsu, T., Dayanthi, W. K. C. N., Yamashita, N., Tanaka, H., & Yamashita, T. (2008). The first introduction of reclaimed wastewater to dry-farming field in Okinawa Island, Japan. Water Science and Technology, 57(8), 1161–1167.CrossRefGoogle Scholar
  29. Silva, A., Figueiredo, S. A., Sales, M. G., & Delerue-Matos, C. (2009). Ecotoxicity tests using the green algae Chlorella vulgaris—a useful tool in hazardous effluents management. Journal of Hazardous Materials, 167(1–3), 179–185.CrossRefGoogle Scholar
  30. Sokal, R. S., & Rohlf, F. J. (1995). Biometry (3rd ed.). New York: W. H. Freeman and Company.Google Scholar
  31. Urkiaga, A., De las Fuentes, L., Bis, B., Chiru, E., Bodo, B., Hernández, F., & Wintgens, T. (2006). Methodologies for feasibility studies related to wastewater reclamation and reuse project. Desalination, 187(1–3), 263–269.CrossRefGoogle Scholar
  32. USEPA (United States Environmental Protection Agency). (1985). Technical support document for water quality-based toxics control. Springfield: National Technical Information Service.Google Scholar
  33. Wintgens, T., Melin, T., Schäfer, A., Khan, S., Muston, M., Bixio, D., & Thoeye, C. (2005). The role of membrane processes in municipal wastewater reclamation and reuse. Desalination, 178(1–3), 1–11.CrossRefGoogle Scholar
  34. Yamamoto, H., Abe, K., Ikebata, K., Yasuda, Y., Tamura, I., Nakamura, Y., & Tatarazako, T. (2010). Whole effluent toxicity test for the effluent of the selected sewage treatment plants in Tokushima, Japan. Environmental Engineering Research, 47, 727–734 (In Japanese).Google Scholar
  35. Yamashita, N., Yasojima, M., Miyajima, K., Komori, K., & Suzuki, Y. (2006). Effects of antibacterial agents, levofloxacin and clarithromycin, on aquatic organisms. Water Science and Technology, 53(11), 65–72.CrossRefGoogle Scholar
  36. Zha, J., & Wang, Z. (2005). Assessing technological feasibility for wastewater reclamation based on early life stage toxicity of Japanese medaka (Oryzias latipes). Agriculture, Ecosystem, Environment, 107(2–3), 187–198.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hiroyuki Mano
    • 1
  • Fumihiko Takeda
    • 1
  • Tomokazu Kitamura
    • 1
  • Seiichiro Okamoto
    • 2
  • Yutaka Suzuki
    • 3
  • Chang-Beom Park
    • 4
  • Nobuhito Yasui
    • 5
  • Kentarou Kobayashi
    • 6
  • Yuji Tanaka
    • 6
  • Naoyuki Yamashita
    • 7
  • Mizuhiko Minamiyama
    • 1
  1. 1.Water Quality Research TeamPublic Works Research InstituteTsukubaJapan
  2. 2.National Institute for Land and Infrastructure ManagementTsukubaJapan
  3. 3.Japan Institute of Wastewater Engineering and TechnologyTokyoJapan
  4. 4.Environmental Safety GroupKorea Institute of Science and Technology EuropeSaarbrückenGermany
  5. 5.Materials and Resources Research GroupPublic Works Research InstituteTsukubaJapan
  6. 6.Global Environment Research LaboratoriesToray Industries, Inc.OtsuJapan
  7. 7.Research Center for Environmental Quality ManagementKyoto UniversityOtsuJapan

Personalised recommendations