Using synoptic tracer surveys to assess runoff sources in an Andean headwater catchment in central Chile

  • A NaudittEmail author
  • C Soulsby
  • C Birkel
  • A Rusman
  • C Schüth
  • L Ribbe
  • P Álvarez
  • N Kretschmer


Headwater catchments in the Andes provide critical sources of water for downstream areas with large agricultural communities dependent upon irrigation. Data from such remote headwater catchments are sparse, and there is limited understanding of their hydrological function to guide sustainable water management. Here, we present the findings of repeat synoptic tracer surveys as rapid appraisal tools to understand dominant hydrological flow paths in the semi-arid Rio Grande basin, a 572-km2 headwater tributary of the 11,696-km2 Limarí basin in central Chile. Stable isotopes in stream water show a typical altitudinal effect, with downstream enrichment in δ2H and δ18O ratios. Seasonal signals are displayed in the isotopic composition of the springtime melting season water line with a steeper gradient, whilst evaporative effects are represented by lower seasonal gradients for autumn and summer. Concentrations of solutes indexed by electrical conductivity indicate that there are limited contributions of deeper mineralised groundwater to streamflow and that weathering rates vary in the different sub-catchments. Although simplistic, the insights gained from the study could be used to inform the structure and parameterisation of rainfall runoff models to provide seasonal discharge predictions as an evidence base for decision making in local water management.


Tracers Stable isotopes Mountainous runoff generation Andes Semi-arid central Chile Steep elevation gradient 



Funding for field visits was provided by the BMBF (German Federal Ministry for Education and Research) in the scope of the research projects “Web based drought information system” and “Increasing water use efficiency in irrigation management” (2012–2014). We especially thank our local project partners from the University of La Serena: Pablo Álvarez, Fabián Reyes and Nicole Kretschmer from the Centre for Advanced Studies in Arid Regions (CEAZA). Their support and hospitality were of key importance to be able to carry out the sampling campaigns. We also thank Christoph Schüth, head of the Institute for Applied Geosciences of the University of Darmstadt, to let us use the laboratory and facilities.


  1. Aravena, R., Suzuki, O., Peña, H., Pollastri, A., Fuenzalida, H., & Grilli, A. (1999). Isotopic composition and origin of the precipitation in northern Chile. Applied Geochemistry, 14, 411–422. doi: 10.1016/S0883-2927(98)00067-5.CrossRefGoogle Scholar
  2. Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309. doi: 10.1038/nature04141.CrossRefGoogle Scholar
  3. Birkel, C., Soulsby, C., & Tetzlaff, D. (2014). Developing a consistent process-based conceptualization of catchment functioning using measurements of internal state variables. Water Resources Research. doi: 10.1002/2013WR014925.
  4. CNR, Ciren, Comisión Nacional de Riego. 1997. Calculo y cartografía de la evapotranspiración potencial en Chile, HASH01a7/d06c2417.dir/CNR-0029_1.pdf, accessed on 11.08.2015.
  5. Coplen, T. B. (1996). New guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope ratio data. Geochimica et Cosmochimica Acta, 60, 3359.CrossRefGoogle Scholar
  6. Döll, P., & Siebert, S. (2002). Global modeling of irrigation water requirements. Water Resources Research, 38(4).Google Scholar
  7. Fritz, P., Silva, C., Suzuki, O., & Salati, E. (1981). Isotope hydrology of groundwaters in the Pampa del Tamarugal, Chile. Journal of Hydrology, 53, 161–184. doi: 10.1016/0022-1694(81)90043-3.CrossRefGoogle Scholar
  8. Gat, J. R. (1987). Variability (in time) of the isotopic composition of precipitation: consequences regarding the isotopic composition of hydrologic systems. Isotope techniques in water resource development, IAEA-SM-319/39 (pp. 551–563). Vienna: IAEA.Google Scholar
  9. Halder, J., Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., & Aggarwal, P. K. (2015). The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research. Hydrology and Earth System Sciences, 19, 3419–3431. doi: 10.5194/hess-19-3419-2015.CrossRefGoogle Scholar
  10. Hoke, G. D., Aranibar, J. N., Viale, M., Araneo, D. C., & Llano, C. (2013). Seasonal moisture sources and the isotopic composition of precipitation, rivers, and carbonates across the Andes at 32.5–35.5_S. Geochemistry, Geophysics, Geosystems, 14. doi: 10.1002/ggge.20045.
  11. Hublart, P., Ruelland, D., Dezetter, A., & Jourde, D. (2015). Reducing structural uncertainty in conceptual hydrological modelling in the semi-arid Andes. Hydrology and Earth System Sciences, 19, 2295–2314. doi: 10.5194/hess-19-2295-2015.CrossRefGoogle Scholar
  12. IAEA, International Atomic Energy Agency/World Meteorological Organization. 2005. Isotope hydrology information system; IAEA/WMO: Vienna, Austria,, accessed in 2015.
  13. Jasechko, S., Kirchner, J. W., Welker, J. M., & McDonnell, J. (2016). Substantial proportion of global streamflow less than three months old. Nature Geoscience, 9, 126–129. doi: 10.1038/ngeo2636.CrossRefGoogle Scholar
  14. Kendall, C., & Caldwell, E. A. (1998). Fundamentals of isotope geochemistry. In C. Kendall & J. J. McDonnell (Eds.), Isotope Tracers in Catchment Hydrology (pp. 51–86). Amsterdam: Elsevier Science.CrossRefGoogle Scholar
  15. Leibundgut, C., Maloszewski, P., & Külls, C. (2009). Tracers in hydrology. Chichester: John Wiley & Sons Ltd.CrossRefGoogle Scholar
  16. Lessels, J., Tetzlaff, D., Birkel, C., Dick, J., & Soulsby, C. (2016). Water sources and mixing in riparian areas revealed by tracers and geospatial analysis. Water Resources Research, 52(1), 456–470. doi: 10.1002/2015WR017519.CrossRefGoogle Scholar
  17. MADDTechnologies. Itemid=318, assessed in 2014.
  18. McGuire, K., Torgersen, C., Likens, G., Buso, D., Lowe, W., & Bailey, S. W. (2014). Network analysis reveals multiscale controls on stream water chemistry. Proceedings of the National Academy of Sciences of the United States of America, 111, 7030–7035.CrossRefGoogle Scholar
  19. Mook, W. G., Gat, J. R., & Meijer, H. A. J. (2001). Environmental isotopes in the hydrological cycle: principles and applications, v. IV: groundwater—saturated and unsaturated zone technical documents. Hydrology, 39 SC.2001/WS/37.Google Scholar
  20. Nauditt, A., Birkel, C., Soulsby, C., & Ribbe, L. (2016). Conceptual modelling to assess the influence of hydroclimatic variability on runoff processes in data scarce semi-arid Andean catchments. Hydrological Sciences Journal. doi: 10.1080/02626667.2016.1240870.
  21. Ohlanders, N., Rodriguez, M., & McPhee, J. (2013). Stable water isotope variation in a central Andean watershed dominated by glacier and snowmelt. Hydrology and Earth System Sciences, 17, 1035–1050. doi: 10.5194/hess-17-1035-2013.CrossRefGoogle Scholar
  22. Oyarzún, R., et al. (2014). Multi-method assessment of connectivity between surface water and shallow groundwater: the case of Limarí River basin, north-central Chile. Hydrogeology Journal, 22, 1857–1873. doi: 10.1007/s10040-014-1170-9.CrossRefGoogle Scholar
  23. Oyarzún, R., Zambra, S., Maturana, H., Oyarzún, J., Aguirre, E., & Kretschmer, N. (2016). Chemical and isotopic assessment of surface water–shallow groundwater interaction in the arid Grande river basin, North-Central Chile. Hydrological Sciences Journal, 61(12), 2193–2204. doi: 10.1080/02626667.2015.1093635.CrossRefGoogle Scholar
  24. Price, M. F., & Egan, P. A. (2014). Policy brief: our global water towers: ensuring ecosystem services from mountains under climate change. Paris: UNESCO.Google Scholar
  25. Rozanski, K., & Araguás, L. (1995). Spatial and temporal variability of stable isotope composition over the South American continent. Bulletin de l'Institut français d'études andines, 24, 379–390.Google Scholar
  26. Rusman, A. (2014). Hydrogeological assessment in the high Andean cordillera, North Central Chile. MSc Thesis at the Department of Geosciences at the University of Darmstadt.Google Scholar
  27. Siegenthaler, U., & Oeschger, H. (1980). Correlation of 18O in precipitation with temperature and altitudes. Nature, 285, 314–318.CrossRefGoogle Scholar
  28. Soulsby, C., Rodgers, P., Smart, R., Dawson, J., & Dunn, S. (2003). A tracer-based assessment of hydrological pathways at different spatial scales in a mesoscale Scottish catchment. Hydrological Processes, 17, 759–777. doi: 10.1002/hyp.1163.CrossRefGoogle Scholar
  29. Soulsby, C., Tetzlaff, D., & Hrachowitz, M. (2009). Tracers and transit times: windows for viewing catchment scale storage? Hydrological Processes, 23, 3503–3507. doi: 10.1002/hyp.7501.CrossRefGoogle Scholar
  30. Soulsby, C., Birkel, C., Tetzlaff, D., & Dunn, S. M. (2011). Inferring groundwater influences on surface water in montane catchments from hydrochemical surveys of springs and streamwaters. Journal of Hydrology, 333, 199–213. doi: 10.1016/j.jhydrol.2006.08.016.CrossRefGoogle Scholar
  31. Souvignet, M., Oyarzún, R., Koen, M., Verbist, J., Gaese, H., & Heinrich, J. (2012). Hydro-meteorological trends in semi-arid North-Central Chile (29-32° S): water resources implications for a fragile Andean region. Hydrological Sciences Journal, 57(3), 479–495. doi: 10.1080/02626667.2012.665607.CrossRefGoogle Scholar
  32. Sprenger, M., Tetzlaff, D., Tunaley, C., Dick, J., Soulsby, C. (2017). Evaporation fractionation in a peatland drainage network affects stream water isotope composition, Water Resources Research, 53, 851–866. doi: 10.1002/2016WR019258.
  33. Squeo, F. A., Barry, G., Warner, R. A., & Espinoza, D. (2006). Bofedales: high altitude peatlands of the central Andes Bofedales: turberas de alta montaña de los Andes centrales. Revista Chilena de Historia Natural, 79(245–255), 2006.Google Scholar
  34. Vicuña, S., Garreaud, R. D., & McPhee, J. (2011). Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change, 105(3), 469–488. doi: 10.1007/s10584-010-9888-4.CrossRefGoogle Scholar
  35. Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., & Weingartner, R. (2007). Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resources Research, 43(7), W07447. doi: 10.1029/2006WR005653.CrossRefGoogle Scholar
  36. Vogel, J. C., Lerman, J. C., & Mook, W. G. (1975). Natural isotopes in surface and groundwater from Argentina. Hydrological Sciences Bulletin, 20, 203–221.Google Scholar
  37. Vuille, M., E. Franquist, R. Garreaud, W. Lavado, B. Caceres (2015). Impact of the global warming hiatus on Andean temperature. Journal of Geophysical Research, 120(9), 3745–3757. doi: 10.1002/2015JD023126.
  38. Windhorst, D., Waltz, T., Timbe, E., Frede, H. G., & Breuer, L. (2013). Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest. Hydrology and Earth System Sciences, 17(1), 409–419. doi: 10.5194/hess-17-409-2013.CrossRefGoogle Scholar
  39. Zimmer, M. A., Bailey, S. W., McGuire, K. J., & Bullen, T. D. (2013). Fine scale variations of surface water chemistry in an ephemeral to perennial drainage network. Hydrological Processes, 27, 3438–3451. doi: 10.1002/hyp.9449.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for Technology and Resources Management in the Tropics and SubtropicsTechnical University CologneCologneGermany
  2. 2.School of GeosciencesUniversity of AberdeenAberdeenUK
  3. 3.Department of GeographyUniversity of Costa RicaSan PedroCosta Rica
  4. 4.Institute for Applied GeosciencesUniversity of DarmstadtDarmstadtGermany
  5. 5.Department of Agricultural EngineeringUniversity of La SerenaLa SerenaChile
  6. 6.Department of Geology and MiningUniversity of La SerenaLa SerenaChile

Personalised recommendations