Using ensemble forecasting to examine how climate change promotes worldwide invasion of the golden apple snail (Pomacea canaliculata)

  • Juncheng Lei
  • Lian Chen
  • Hong Li


The golden apple snail, Pomacea canaliculata, is one of the world’s 100 most notorious invasive alien species. Knowledge about the critical climate variables that limit the global distribution range of the snail, as well as predictions of future species distributions under climate change, is very helpful for management of snail. In this study, the climatically suitable habitats for this kind of snail under current climate conditions were modeled by biomod2 and projected to eight future climate scenarios (2 time periods [2050s, 2080s] × 2 Representative Concentration Pathways [RCPs; RCP2.6, RCP8.5] × 2 atmospheric General Circulation Models [GCMs; Canadian Centre for Climate Modelling and Analysis (CCCMA), Commonwealth Scientific and Industrial Research Organisation (CSIRO)]). The results suggest that the lowest temperature of coldest month is the critical climate variable to restrict the global distribution range of P. canaliculata. It is predicted that the climatically suitable habitats for P. canaliculata will increase by an average of 3.3% in 2050s and 3.8% in 2080s for the RCP2.6 scenario, while they increase by an average of 8.7% in 2050s and 10.3% in 2080s for the RCP8.5 scenario. In general, climate change in the future may promote the global invasion of the invasive species. Therefore, it is necessary to take proactive measures to monitor and preclude the invasion of this species.


Invasive alien species Pomacea canaliculata Species distribution model biomod2 



The authors are grateful to Tiago S. Vasconcelos, Morgane Barbet-Massin, and anonymous reviewers for valuable comments and suggestions on the manuscript. This research was sponsored by Qing Lan Project of Jiangsu Province, Natural Science Foundation of Jiangsu Province (grant no. BK20131087), Natural Science Foundation of Jiangsu Higher Education Institutions of China (grant no. 15KJB180004), and Doctoral Scientific Research Fund of Jiangsu Second Normal University (grant no. JSNU2015BZ04).

Supplementary material

10661_2017_6124_MOESM1_ESM.docx (50 kb)
Appendix S1 References used for collecting Pomacea canaliculata presence records. (DOCX 50 kb).


  1. Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232.CrossRefGoogle Scholar
  2. Barbet-Massin, M., Rome, Q., Muller, F., Perrard, A., Villemant, C., & Jiguet, F. (2013). Climate change increases the risk of invasion by the yellow-legged hornet. Biological Conservation, 157(1), 4–10.CrossRefGoogle Scholar
  3. Beltramino, A. A., Vogler, R. E., Gregoric, D. E. G., & Rumi, A. (2015). Impact of climate change on the distribution of a giant land snail from South America: predicting future trends for setting conservation priorities on native malacofauna. Climatic Change, 131(4), 621–633.CrossRefGoogle Scholar
  4. Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., et al. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507.CrossRefGoogle Scholar
  5. Broennimann, O., Treier, U. A., Müller-Schärer, H., Thuiller, W., Peterson, A. T., & Guisan, A. (2007). Evidence of climatic niche shift during biological invasion. Ecology Letters, 10(8), 701–709.CrossRefGoogle Scholar
  6. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.CrossRefGoogle Scholar
  7. Conlisk, E., Syphard, A. D., Franklin, J., Flint, L., Flint, A., & Regan, H. (2013). Uncertainty in assessing the impacts of global change with coupled dynamic species distribution and population models. Global Change Biology, 19(3), 858–869.CrossRefGoogle Scholar
  8. D’Amen, M., Bombi, P., Pearman, P. B., Schmatz, D. R., Zimmermann, N. E., & Bologna, M. A. (2011). Will climate change reduce the efficacy of protected areas for amphibian conservation in Italy? Biological Conservation, 144(3), 989–997.CrossRefGoogle Scholar
  9. Elith, J., & Graham, C. H. (2009). Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32(1), 66–77.CrossRefGoogle Scholar
  10. Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1(4), 330–342.CrossRefGoogle Scholar
  11. Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.CrossRefGoogle Scholar
  12. Franklin, J. (2010). Moving beyond static species distribution models in support of conservation biogeography. Diversity and Distributions, 16(3), 321–330.CrossRefGoogle Scholar
  13. Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I., & Thuiller, W. (2010). Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions, 16(3), 331–342.CrossRefGoogle Scholar
  14. Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models—how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21(11), 1126–1136.CrossRefGoogle Scholar
  15. Giovanelli, J. G. R., de Siqueira, M. F., Haddad, C. F. B., & Alexandrino, J. (2010). Modeling a spatially restricted distribution in the Neotropics: how the size of calibration area affects the performance of five presence-only methods. Ecological Modelling, 221(2), 215–224.CrossRefGoogle Scholar
  16. Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186.CrossRefGoogle Scholar
  17. Guo, Q., & Liu, Y. (2010). ModEco: an integrated software package for ecological niche modeling. Ecography, 33(4), 637–642.CrossRefGoogle Scholar
  18. Hartley, S., Harris, R., & Lester, P. J. (2006). Quantifying uncertainty in the potential distribution of an invasive species: climate and the Argentine ant. Ecology Letters, 9(9), 1068–1079.CrossRefGoogle Scholar
  19. Hayes, K. A., Joshi, R. C., Thiengo, S. C., & Cowie, R. H. (2008). Out of South America: multiple origins of non-native apple snails in Asia. Diversity and Distributions, 14(4), 701–712.CrossRefGoogle Scholar
  20. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.CrossRefGoogle Scholar
  21. Horgan, F. G., Stuart, A. M., & Kudavidanage, E. P. (2014). Impact of invasive apple snails on the functioning and services of natural and managed wetlands. Acta Oecologica, 54(1), 90–100.CrossRefGoogle Scholar
  22. IPCC. (2014). Climate change 2014: synthesis report. Geneva: Switzerland 151pp.Google Scholar
  23. Jiménez-Valverde, A., Peterson, A. T., Soberón, J., Overton, J. M., Aragón, P., & Lobo, J. M. (2011). Use of niche models in invasive species risk assessments. Biological Invasions, 13(12), 2785–2797.CrossRefGoogle Scholar
  24. Kappes, H., & Haase, P. (2012). Slow, but steady: dispersal of freshwater molluscs. Aquatic Sciences, 74(1), 1–14.CrossRefGoogle Scholar
  25. Le Maitre, D. C., Thuiller, W., & Schonegevel, L. (2008). Developing an approach to defining the potential distributions of invasive plant species: a case study of Hakea species in South Africa. Global Ecology and Biogeography, 17(5), 569–584.CrossRefGoogle Scholar
  26. Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771.CrossRefGoogle Scholar
  27. Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. (2004). 100 of the world’s worst invasive alien species. A selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), 12pp.Google Scholar
  28. Lv, S., Zhang, Y., Steinmann, P., Yang, G. J., Yang, K., Zhou, X. N., et al. (2011). The emergence of angiostrongyliasis in the People’s Republic of China: the interplay between invasive snails, climate change and transmission dynamics. Freshwater Biology, 56(4), 717–734.CrossRefGoogle Scholar
  29. Lv, S., Zhang, Y., Liu, H. X., Hu, L., Liu, Q., Wei, F. R., et al. (2013). Phylogenetic evidence for multiple and secondary introductions of invasive snails: Pomacea species in the People's Republic of China. Diversity and Distributions, 19(2), 147–156.CrossRefGoogle Scholar
  30. Matsukura, K., Tsumuki, H., Izumi, Y., & Wada, T. (2009). Physiological response to low temperature in the freshwater apple snail, Pomacea canaliculata (Gastropoda: Ampullariidae). The Journal of Experimental Biology, 212, 2558–2563.CrossRefGoogle Scholar
  31. Matsukura, K., Izumi, Y., Yoshida, K., & Wada, T. (2016). Cold tolerance of invasive freshwater snails, Pomacea canaliculata, P. maculata, and their hybrids helps explain their different distributions. Freshwater Biology, 61, 80–87.CrossRefGoogle Scholar
  32. Mazza, G., Tricarico, E., Genovesi, P., & Gherardi, F. (2014). Biological invaders are threats to human health: an overview. Ethology Ecology & Evolution, 26(2–3), 112–129.CrossRefGoogle Scholar
  33. McDowell, W. G., Benson, A. J., & Byers, J. E. (2014). Climate controls the distribution of a widespread invasive species: implications for future range expansion. Freshwater Biology, 59, 847–857.CrossRefGoogle Scholar
  34. Nghiem, L. T. P., Soliman, T., Yeo, D. C. J., Tan, H. T. W., Evans, T. A., Mumford, J. D., et al. (2013). Economic and environmental impacts of harmful non-indigenous species in Southeast Asia. PloS One, 8(8), e71255.CrossRefGoogle Scholar
  35. Nori, J., Urbina-Cardona, J. N., Loyola, R. D., Lescano, J. N., & Leynaud, G. C. (2011). Climate change and American bullfrog invasion: what could we expect in South America? PloS One, 6(10), e25718.CrossRefGoogle Scholar
  36. Olson, L., Sauder, J. D., Albrecht, N. M., Vinkey, R. S., Cushman, S. A., & Schwartz, M. K. (2014). Modeling the effects of dispersal and patch size on predicted fisher (Pekania [Martes] pennanti) distribution in the U.S. Rocky Mountains. Biological Conservation, 169, 89–98.CrossRefGoogle Scholar
  37. Padilla, D. K., & Williams, S. L. (2004). Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Frontiers in Ecology and the Environment, 2(3), 131–138.CrossRefGoogle Scholar
  38. Papes, M., Havel, J. E., & Zanden, J. V. (2016). Using maximum entropy to predict the potential distribution of an invasive freshwater snail. Freshwater Biology, 61, 457–471.CrossRefGoogle Scholar
  39. Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42.CrossRefGoogle Scholar
  40. Pearman, P. B., Guisan, A., Broennimann, O., & Randin, C. F. (2008). Niche dynamics in space and time. Trends in Ecology & Evolution, 23(3), 149–158.CrossRefGoogle Scholar
  41. Pigneur, L. M., Falisse, E., Roland, K., Everbecq, E., Deliège, J. F., Smitz, J. S., et al. (2014). Impact of invasive Asian clams, Corbicula spp., on a large river ecosystem. Freshwater Biology, 59(3), 573–583.CrossRefGoogle Scholar
  42. Pyke, C. R., Thomas, R., Porter, R. D., Hellmann, J. J., Dukes, J. S., Lodge, D. M., et al. (2008). Current practices and future opportunities for policy on climate change and invasive species. Conservation Biology, 22(3), 585–592.CrossRefGoogle Scholar
  43. Randin, C. F., Engler, R., Normand, S., Zappa, M., Zimmermann, N. E., Pearman, P. B., et al. (2009). Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biology, 15(6), 557–1569.CrossRefGoogle Scholar
  44. Rödder, D., & Engler, J. (2011). Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Global Ecology and Biogeography, 20(6), 915–927.CrossRefGoogle Scholar
  45. Sarma, R. R., Munsi, M., & Ananthram, A. N. (2015). Effect of climate change on invasion risk of Giant African Snail (Achatina fulica Férussac, 1821: Achatinidae) in India. PloS One, 10(11), e0143724.CrossRefGoogle Scholar
  46. Secretariat of the Convention on Biological Diversity. (2014). Global biodiversity outlook 4. Montréal, 155 pp.Google Scholar
  47. Sousa, R., Novais, A., Costa, R., & Strayer, D. L. (2014). Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia, 735(1), 233–251.CrossRefGoogle Scholar
  48. Theobald, E. J., Ettinger, A. K., Burgess, H. K., DeBey, L. B., Schmidt, N. R., Froehlich, H. E., et al. (2015). Global change and local solutions: tapping the unrealized potential of citizen science for biodiversity research. Biological Conservation, 181, 236–244.CrossRefGoogle Scholar
  49. Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., et al. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148.CrossRefGoogle Scholar
  50. Thuiller, W. (2003). BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 9(10), 1353–1362.CrossRefGoogle Scholar
  51. Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD—a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369–373.CrossRefGoogle Scholar
  52. Tricarico, E., Junqueira, A. O. R., & Dudgeon, D. (2016). Alien species in aquatic environments: a selective comparison of coastal and inland waters in tropical and temperate latitudes. Aquatic Conservation: Marine and Freshwater Ecosystems, 26(5), 872–891.CrossRefGoogle Scholar
  53. Václavík, T., & Meentemeyer, R. K. (2012). Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distribution, 18(1), 73–83.CrossRefGoogle Scholar
  54. Vander Zanden, M. J., Hansen, G. J. A., Higgins, S. N., & Kornis, M. S. (2010). A pound of prevention, plus a pound of cure: early detection and eradication of invasive species in the Laurentian Great Lakes. Journal of Great Lakes Research, 36(1), 199–205.CrossRefGoogle Scholar
  55. Wada, T., & Matsukura, K. (2011). Linkage of cold hardiness with desiccation tolerance in the invasive freshwater apple snail, Pomacea canaliculata (Caenogastropoda: Ampullariidae). Journal of Molluscan Studies, 77(2), 149–153.CrossRefGoogle Scholar
  56. Wang, Z., Tan, J., Tan, L., Liu, J., & Zhong, L. (2012). Control the egg hatchling process of Pomacea canaliculata (Lamarck) by water spraying and submersion. Acta Ecologica Sinica, 32(4), 184–188.CrossRefGoogle Scholar
  57. Xu, Y. P., Zheng, G. W., Dong, S. Z., Liu, G. F., & Yu, X. P. (2014). Molecular cloning, characterization and expression analysis of HSP60, HSP70 and HSP90 in the golden apple snail, Pomacea canaliculata. Fish & Shellfish Immunology, 41(2), 643–653.CrossRefGoogle Scholar
  58. Xu, Z. L., Peng, H. H., & Peng, S. Z. (2015). The development and evaluation of species distribution models. Acta Ecologica Sinica, 35(2), 557–567 (in Chinese with English abstract).Google Scholar
  59. Yamanishi, Y., Yoshida, K., Fujimori, N., & Yusa, Y. (2012). Predator-driven biotic resistance and propagule pressure regulate the invasive apple snail Pomacea canaliculata in Japan. Biological Invasions, 14(7), 1343–1352.CrossRefGoogle Scholar
  60. Zhang, H. T., Luo, D., Mu, X. D., Xu, M., Wei, H., Luo, J. R., et al. (2016). Predicting the potential suitable distribution area of the apple snail Pomacea canaliculata in China based on multiple ecological niche models. Chinese Journal of Applied Ecology, 27(4), 1277–1284 (in Chinese with English abstract).Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.College of Life Science and Chemical EngineeringJiangsu Second Normal UniversityNanjingChina
  2. 2.School of Geography and PlanningGannan Normal UniversityGanzhouChina
  3. 3.Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina

Personalised recommendations