Contaminants of emerging concern: a review of new approach in AOP technologies

  • Maryam Salimi
  • Ali Esrafili
  • Mitra Gholami
  • Ahmad Jonidi Jafari
  • Roshanak Rezaei Kalantary
  • Mahdi Farzadkia
  • Majid Kermani
  • Hamid Reza Sobhi


The presence of contaminants of emerging concern (CECs) such as pharmaceuticals and personal care products (PPCPs), endocrine-disrupting compounds (EDCs), flame retardants (FRs), pesticides, and artificial sweeteners (ASWs) in the aquatic environments remains a major challenge to the environment and human health. In this review, the classification and occurrence of emerging contaminants in aquatic environments were discussed in detail. It is well documented that CECs are susceptible to poor removal during the conventional wastewater treatment plants, which introduce them back to the environment ranging from nanogram per liter (e.g., carbamazepine) up to milligram per liter (e.g., acesulfame) concentration level. Meanwhile, a deep insight into the application of advanced oxidation processes (AOPs) on mitigation of the CECs from aquatic environment was presented. In this regard, the utilization of various treatment technologies based on AOPs including ozonation, Fenton processes, sonochemical, and TiO2 heterogeneous photocatalysis was reviewed. Additionally, some innovations (e.g., visible light heterogeneous photocatalysis, electro-Fenton) concerning the AOPs and the combined utilization of AOPs (e.g., sono-Fenton) were documented.


Contaminants of emerging concern Wastewater treatment plant Effluent Advanced oxidation processes Hydroxyl radicals Combined process 



Active pharmaceutical ingredients


Advanced oxidation processes


Artificial sweeteners


Bisphenol A


Boron-doped diamond


Contaminants of emerging concern


Dissolved organic carbon


Drinking water


Drinking water treatment plant


Electro-spray ionization


Endocrine-disrupting compounds


Flame retardants


Gas chromatography–mass spectrometry




High-performance liquid chromatography


Hydroxyl radical


Ion Chromatography


Limit of quantification


Liquid chromatography–tandem mass spectrometry




Mass spectrometer




Pharmaceutically active compounds


Pharmaceuticals and personal care products


Polybrominated diphenyl ethers


Rapid resolution liquid chromatography–tandem mass spectrometry


Solid-phase extraction


Solid-phase extraction–liquid chromatography–tandem mass spectrometry


Total organic carbon




Trace organic contaminants


Transformation products










Wastewater treatment plants


  1. Abdessalem, A. K., Bellakhal, N., Oturan, N., Dachraoui, M., & Oturan, M. A. (2010). Treatment of a mixture of three pesticides by photo- and electro-Fenton processes. Desalination, 250(1), 450–455. doi: 10.1016/j.desal.2009.09.072.CrossRefGoogle Scholar
  2. Ammar, H. B. (2016). Sono-Fenton process for metronidazole degradation in aqueous solution: effect of acoustic cavitation and peroxydisulfate anion. Ultrasonics Sonochemistry, 33, 164–169. doi: 10.1016/j.ultsonch.2016.04.035.CrossRefGoogle Scholar
  3. Ananpattarachai, J., & Kajitvichyanukul, P. (2015). Photocatalytic degradation of p,p′-DDT under UV and visible light using interstitial N-doped TiO2. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 50(4), 247–260. doi: 10.1080/03601234.2015.999592.CrossRefGoogle Scholar
  4. Anumol, T., Vijayanandan, A., Park, M., Philip, L., & Snyder, S. A. (2016). Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai, India. Environment International, 92, 33–42.CrossRefGoogle Scholar
  5. Aronson, D., Weeks, J., Meylan, B., Guiney, P. D., & Howard, P. H. (2012). Environmental release, environmental concentrations, and ecological risk of N, N‐diethyl‐m‐toluamide (DEET). Integrated Environmental Assessment and Management, 8(1), 135–166.CrossRefGoogle Scholar
  6. Asghar, A., Abdul Raman, A. A., & Wan Daud, W. M. A. (2015). Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal of Cleaner Production, 87, 826–838. doi: 10.1016/j.jclepro.2014.09.010.CrossRefGoogle Scholar
  7. Aydin, E., & Talinli, I. (2013). Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece Watershed, Turkey. Chemosphere, 90(6), 2004–2012. doi: 10.1016/j.chemosphere.2012.10.074.CrossRefGoogle Scholar
  8. Babuponnusami, A., & Muthukumar, K. (2012). Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chemical Engineering Journal, 183, 1–9. doi: 10.1016/j.cej.2011.12.010.CrossRefGoogle Scholar
  9. Bagal, M. V., & Gogate, P. R. (2014). Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review. Ultrasonics Sonochemistry, 21(1), 1–14.CrossRefGoogle Scholar
  10. Bai, Z., Yang, Q., & Wang, J. (2016). Catalytic ozonation of sulfamethazine antibiotics using Ce0.1Fe0.9OOH: catalyst preparation and performance. Chemosphere, 161, 174–180. doi: 10.1016/j.chemosphere.2016.07.012.CrossRefGoogle Scholar
  11. Baquero, F., Martínez, J.-L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19(3), 260–265. doi: 10.1016/j.copbio.2008.05.006.CrossRefGoogle Scholar
  12. Bergman, Å., Rydén, A., Law, R. J., de Boer, J., Covaci, A., Alaee, M., et al. (2012). A novel abbreviation standard for organobromine, organochlorine and organophosphorus flame retardants and some characteristics of the chemicals. Environment International, 49, 57–82.CrossRefGoogle Scholar
  13. Bernabeu, A., Vercher, R. F., Santos-Juanes, L., Simón, P. J., Lardín, C., Martínez, M. A., et al. (2011). Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents. Catalysis Today, 161(1), 235–240. doi: 10.1016/j.cattod.2010.09.025.CrossRefGoogle Scholar
  14. Bing, J., Hu, C., Nie, Y., Yang, M., & Qu, J. (2015). Mechanism of catalytic ozonation in Fe2O3/Al2O3@SBA-15 aqueous suspension for destruction of ibuprofen. Environmental Science & Technology, 49(3), 1690–1697. doi: 10.1021/es503729h.CrossRefGoogle Scholar
  15. Blair, B. D., Crago, J. P., Hedman, C. J., & Klaper, R. D. (2013). Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere, 93(9), 2116–2123. doi: 10.1016/j.chemosphere.2013.07.057.CrossRefGoogle Scholar
  16. Borowska, E., Bourgin, M., Hollender, J., Kienle, C., McArdell, C. S., & von Gunten, U. (2016). Oxidation of cetirizine, fexofenadine and hydrochlorothiazide during ozonation: kinetics and formation of transformation products. Water Research, 94, 350–362. doi: 10.1016/j.watres.2016.02.020.CrossRefGoogle Scholar
  17. Bouafıa-Cherguı, S., Zemmourı, H., Chabanı, M., & Bensmaılı, A. (2015). TiO2-photocatalyzed degradation of tetracycline: kinetic study, adsorption isotherms, mineralization and toxicity reduction. Desalination and Water Treatment, 1–8.Google Scholar
  18. Boutemedjet, S., Hamdaoui, O., Merouani, S., & Pétrier, C. (2016). Sonochemical degradation of endocrine disruptor propylparaben in pure water, natural water, and seawater. Desalination and Water Treatment, 1–11.Google Scholar
  19. Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 109(12), 6570–6631. doi: 10.1021/cr900136g.CrossRefGoogle Scholar
  20. Bueno, M. J. M., Gomez, M. J., Herrera, S., Hernando, M. D., Agüera, A., & Fernández-Alba, A. R. (2012). Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: two years pilot survey monitoring. Environmental Pollution, 164, 267–273. doi: 10.1016/j.envpol.2012.01.038.CrossRefGoogle Scholar
  21. Buerge, I. J., Buser, H.-R., Kahle, M., Müller, M. D., & Poiger, T. (2009). Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater. Environmental Science & Technology, 43(12), 4381–4385. doi: 10.1021/es900126x.CrossRefGoogle Scholar
  22. Campo, J., Masiá, A., Blasco, C., & Picó, Y. (2013). Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins. Journal of Hazardous Materials, 263(Part 1), 146–157. doi: 10.1016/j.jhazmat.2013.09.061.CrossRefGoogle Scholar
  23. Casas, M. E., & Bester, K. (2015). Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)? Science of the Total Environment, 506, 315–322.CrossRefGoogle Scholar
  24. Cédat, B., de Brauer, C., Métivier, H., Dumont, N., & Tutundjan, R. (2016). Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale. Water Research, 100, 357–366. doi: 10.1016/j.watres.2016.05.040.CrossRefGoogle Scholar
  25. Chakma, S., & Moholkar, V. S. (2014). Investigations in synergism of hybrid advanced oxidation processes with combinations of sonolysis+ Fenton process+ UV for degradation of bisphenol A. Industrial & Engineering Chemistry Research, 53(16), 6855–6865.CrossRefGoogle Scholar
  26. Chen, C., Ma, W., & Zhao, J. (2010). Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 39(11), 4206–4219.CrossRefGoogle Scholar
  27. Costa, L. G., & Giordano, G. (2007). Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology, 28(6), 1047–1067. doi: 10.1016/j.neuro.2007.08.007.CrossRefGoogle Scholar
  28. Cotman, M., Erjavec, B., Djinović, P., & Pintar, A. (2016). Catalyst support materials for prominent mineralization of bisphenol A in catalytic ozonation process. Environmental Science and Pollution Research, 1–11.Google Scholar
  29. Cruz, M., Gomez, C., Duran-Valle, C. J., Pastrana-Martínez, L. M., Faria, J. L., Silva, A. M. T., et al. (2015). Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. [Article in Press]. Applied Surface Science, doi: 10.1016/j.apsusc.2015.09.268.
  30. Cuerda-Correa, E. M., Domínguez, J. R., Muñoz-Peña, M. J., & González, T. (2016). Degradation of parabens in different aqueous matrices by several O3-derived advanced oxidation processes. Industrial & Engineering Chemistry Research, 55(18), 5161–5172.CrossRefGoogle Scholar
  31. De la Cruz, N., Esquius, L., Grandjean, D., Magnet, A., Tungler, A., de Alencastro, L. F., et al. (2013). Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Research, 47(15), 5836–5845. doi: 10.1016/j.watres.2013.07.005.CrossRefGoogle Scholar
  32. Dindarsafa, M., Khataee, A., Kaymak, B., Vahid, B., Karimi, A., & Rahmani, A. (2017). Heterogeneous sono-Fenton-like process using martite nanocatalyst prepared by high energy planetary ball milling for treatment of a textile dye. Ultrasonics Sonochemistry, 34, 389–399. doi: 10.1016/j.ultsonch.2016.06.016.CrossRefGoogle Scholar
  33. Dong, F., Xiong, T., Sun, Y., Zhao, Z., Zhou, Y., Feng, X., et al. (2014). A semimetal bismuth element as a direct plasmonic photocatalyst. Chemical Communications, 50(72), 10386–10389.CrossRefGoogle Scholar
  34. Dsikowitzky, L., Dwiyitno, Heruwati, E., Ariyani, F., Irianto, H. E., & Schwarzbauer, J. (2014). Exceptionally high concentrations of the insect repellent N,N-diethyl-m-toluamide (DEET) in surface waters from Jakarta, Indonesia. Environmental Chemistry Letters, 12(3), 407–411. doi: 10.1007/s10311-014-0462-6.CrossRefGoogle Scholar
  35. Du, D., Shi, W., Wang, L., & Zhang, J. (2017). Yolk-shell structured Fe3O4@void@TiO2 as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline. Applied Catalysis B: Environmental, 200, 484–492. doi: 10.1016/j.apcatb.2016.07.043.CrossRefGoogle Scholar
  36. Duo, F., Wang, Y., Fan, C., Mao, X., Zhang, X., Wang, Y., et al. (2015). Low temperature one-step synthesis of rutile TiO 2/BiOCl composites with enhanced photocatalytic activity. Materials Characterization, 99, 8–16.CrossRefGoogle Scholar
  37. Durán, A., Monteagudo, J. M., Sanmartín, I., & García-Díaz, A. (2013). Sonophotocatalytic mineralization of antipyrine in aqueous solution. Applied Catalysis B: Environmental, 138–139, 318–325. doi: 10.1016/j.apcatb.2013.03.013.CrossRefGoogle Scholar
  38. Esplugas, S., Giménez, J., Contreras, S., Pascual, E., & Rodriguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water Research, 36(4), 1034–1042. doi: 10.1016/S0043-1354(01)00301-3.CrossRefGoogle Scholar
  39. Esteban, S., Gorga, M., Petrovic, M., González-Alonso, S., Barceló, D., & Valcárcel, Y. (2014). Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain. Science of the Total Environment, 466–467, 939–951. doi: 10.1016/j.scitotenv.2013.07.101.CrossRefGoogle Scholar
  40. Eswar, N. K., Ramamurthy, P. C., & Madras, G. (2016). Novel synergistic photocatalytic degradation of antibiotics and bacteria using V–N doped TiO 2 under visible light: the state of nitrogen in V-doped TiO 2. New Journal of Chemistry, 40(4), 3464–3475.CrossRefGoogle Scholar
  41. Fawell, J., & Ong, C. N. (2012). Emerging contaminants and the implications for drinking water. International Journal of Water Resources Development, 28(2), 247–263.CrossRefGoogle Scholar
  42. Fedorova, G., Grabic, R., Nyhlen, J., Järhult, J. D., & Söderström, H. (2016). Fate of three anti-influenza drugs during ozonation of wastewater effluents–degradation and formation of transformation products. Chemosphere, 150, 723–730.CrossRefGoogle Scholar
  43. Ferro, G., Guarino, F., Castiglione, S., & Rizzo, L. (2016). Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process. Science of the Total Environment, 560–561, 29–35. doi: 10.1016/j.scitotenv.2016.04.047.CrossRefGoogle Scholar
  44. Flores, C., Ventura, F., Martin-Alonso, J., & Caixach, J. (2013). Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines. Science of the Total Environment, 461–462, 618–626. doi: 10.1016/j.scitotenv.2013.05.026.CrossRefGoogle Scholar
  45. Gadipelly, C., Pérez-González, A., Yadav, G. D., Ortiz, I., Ibáñez, R., Rathod, V. K., et al. (2014). Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Industrial & Engineering Chemistry Research, 53(29), 11571–11592. doi: 10.1021/ie501210j.CrossRefGoogle Scholar
  46. Ghafoori, S., Mowla, A., Jahani, R., Mehrvar, M., & Chan, P. K. (2015). Sonophotolytic degradation of synthetic pharmaceutical wastewater: statistical experimental design and modeling. Journal of Environmental Management, 150, 128–137. doi: 10.1016/j.jenvman.2014.11.011.CrossRefGoogle Scholar
  47. Giraldo, A. L., Erazo-Erazo, E. D., Flórez-Acosta, O. A., Serna-Galvis, E. A., & Torres-Palma, R. A. (2015). Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti/IrO2 anodes: evaluation of degradation routes, organic by-products and effects of water matrix components. Chemical Engineering Journal, 279, 103–114. doi: 10.1016/j.cej.2015.04.140.CrossRefGoogle Scholar
  48. Giri, A. S., & Golder, A. K. (2015). Decomposition of drug mixture in Fenton and photo-Fenton processes: comparison to singly treatment, evolution of inorganic ions and toxicity assay. Chemosphere, 127, 254–261.CrossRefGoogle Scholar
  49. Giulivo, M., Lopez de Alda, M., Capri, E., & Barceló, D. (2016). Human exposure to endocrine disrupting compounds: their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environmental Research, 151, 251–264. doi: 10.1016/j.envres.2016.07.011.CrossRefGoogle Scholar
  50. Gligorovski, S., Strekowski, R., Barbati, S., & Vione, D. (2015). Environmental implications of hydroxyl radicals (•OH). Chemical Reviews, 115(24), 13051–13092. doi: 10.1021/cr500310b.CrossRefGoogle Scholar
  51. Gmurek, M., Olak-Kucharczyk, M., & Ledakowicz, S. (2016). Photochemical decomposition of endocrine disrupting compounds—a review. Chemical Engineering Journal. doi: 10.1016/j.cej.2016.05.014.
  52. Gramatica, P., Cassani, S., & Sangion, A. (2016). Aquatic ecotoxicity of personal care products: QSAR models and ranking for prioritization and safer alternatives’ design. Green Chemistry.Google Scholar
  53. Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338–344.CrossRefGoogle Scholar
  54. Gurkan, Y. Y., Kasapbasi, E., & Cinar, Z. (2013). Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: characterization and DFT modeling of the surface. Chemical Engineering Journal, 214, 34–44. doi: 10.1016/j.cej.2012.10.025.CrossRefGoogle Scholar
  55. Han, C., Xia, B., Chen, X., Shen, J., Miao, Q., & Shen, Y. (2016). Determination of four paraben-type preservatives and three benzophenone-type ultraviolet light filters in seafoods by LC-QqLIT-MS/MS. Food Chemistry, 194, 1199–1207. doi: 10.1016/j.foodchem.2015.08.093.CrossRefGoogle Scholar
  56. Hocquet, D., Muller, A., & Bertrand, X. (2016). What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. Journal of Hospital Infection, 93(4), 395–402. doi: 10.1016/j.jhin.2016.01.010.CrossRefGoogle Scholar
  57. Homem, V., & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices—a review. Journal of Environmental Management, 92(10), 2304–2347.CrossRefGoogle Scholar
  58. Houtman, C. J. (2010). Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. Journal of Integrative Environmental Sciences, 7(4), 271–295.CrossRefGoogle Scholar
  59. Ioannidou, E., Frontistis, Z., Antonopoulou, M., Venieri, D., Konstantinou, I., Kondarides, D. I., et al. (2017). Solar photocatalytic degradation of sulfamethoxazole over tungsten-modified TiO 2. Chemical Engineering Journal, 318, 143–152.CrossRefGoogle Scholar
  60. James-Todd, T. M., Chiu, Y.-H., & Zota, A. R. (2016). Racial/ethnic disparities in environmental endocrine disrupting chemicals and women’s reproductive health outcomes: epidemiological examples across the life course. Current Epidemiology Reports, 3(2), 161–180.CrossRefGoogle Scholar
  61. Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., et al. (2011). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 45(3), 1165–1176. doi: 10.1016/j.watres.2010.11.010.CrossRefGoogle Scholar
  62. Jiang, J.-J., Lee, C.-L., Brimblecombe, P., Vydrova, L., & Fang, M.-D. (2016). Source contributions and mass loadings for chemicals of emerging concern: chemometric application of pharmaco-signature in different aquatic systems. Environmental Pollution, 208, 79–86.CrossRefGoogle Scholar
  63. Joseph, C. G., Li Puma, G., Bono, A., & Krishnaiah, D. (2009). Sonophotocatalysis in advanced oxidation process: a short review. Ultrasonics Sonochemistry, 16(5), 583–589. doi: 10.1016/j.ultsonch.2009.02.002.CrossRefGoogle Scholar
  64. Katsoyiannis, I. A., Canonica, S., & von Gunten, U. (2011). Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Research, 45(13), 3811–3822. doi: 10.1016/j.watres.2011.04.038.CrossRefGoogle Scholar
  65. Klamerth, N., Rizzo, L., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. R. (2010). Degradation of fifteen emerging contaminants at μg L−1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 44(2), 545–554. doi: 10.1016/j.watres.2009.09.059.CrossRefGoogle Scholar
  66. Köck-Schulmeyer, M., Villagrasa, M., López de Alda, M., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the Total Environment, 458–460, 466–476. doi: 10.1016/j.scitotenv.2013.04.010.CrossRefGoogle Scholar
  67. Kovacic, M., Salaeh, S., Kusic, H., Suligoj, A., Kete, M., Fanetti, M., et al. (2016). Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites. Environmental Science and Pollution Research, 1–13.Google Scholar
  68. Kuroda, K., Murakami, M., Oguma, K., Muramatsu, Y., Takada, H., & Takizawa, S. (2012). Assessment of groundwater pollution in Tokyo using PPCPs as sewage markers. Environmental Science & Technology, 46(3), 1455–1464.CrossRefGoogle Scholar
  69. Lange, F. T., Scheurer, M., & Brauch, H.-J. (2012). Artificial sweeteners—a recently recognized class of emerging environmental contaminants: a review. Analytical and Bioanalytical Chemistry, 403(9), 2503–2518. doi: 10.1007/s00216-012-5892-z.CrossRefGoogle Scholar
  70. Lee, Y., Gerrity, D., Lee, M., Gamage, S., Pisarenko, A., Trenholm, R. A., et al. (2016). Organic contaminant abatement in reclaimed water by UV/H2O2 and a combined process consisting of O3/H2O2 followed by UV/H2O2: prediction of abatement efficiency, energy consumption, and byproduct formation. Environmental Science & Technology. doi: 10.1021/acs.est.5b04904.
  71. Lee, Y., & von Gunten, U. (2016). Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: reaction kinetics, transformation products, and changes of biological effects. Environmental Science: Water Research & Technology, 2(3), 421–442. doi: 10.1039/C6EW00025H.Google Scholar
  72. Li, H., Liu, J., Qian, J., Li, Q., & Yang, J. (2014a). Preparation of bi-doped TiO2 nanoparticles and their visible light photocatalytic performance. Chinese Journal of Catalysis, 35(9), 1578–1589. doi: 10.1016/S1872-2067(14)60124-8.CrossRefGoogle Scholar
  73. Li, J., Yu, N., Zhang, B., Jin, L., Li, M., Hu, M., et al. (2014b). Occurrence of organophosphate flame retardants in drinking water from China. Water Research, 54, 53–61. doi: 10.1016/j.watres.2014.01.031.CrossRefGoogle Scholar
  74. Li, K., Yediler, A., Yang, M., Schulte-Hostede, S., & Wong, M. H. (2008). Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products. Chemosphere, 72(3), 473–478. doi: 10.1016/j.chemosphere.2008.02.008.CrossRefGoogle Scholar
  75. Li, S., Zhang, G., Wang, P., Zheng, H., & Zheng, Y. (2016). Microwave-enhanced Mn-Fenton process for the removal of BPA in water. Chemical Engineering Journal, 294, 371–379. doi: 10.1016/j.cej.2016.03.006.CrossRefGoogle Scholar
  76. Li, Y., Wang, J., Liu, B., Dang, L., Yao, H., & Li, Z. (2011). BiOI-sensitized TiO 2 in phenol degradation: a novel efficient semiconductor sensitizer. Chemical Physics Letters, 508(1), 102–106.CrossRefGoogle Scholar
  77. Lin, H., Wu, J., Oturan, N., Zhang, H., & Oturan, M. A. (2016). Degradation of artificial sweetener saccharin in aqueous medium by electrochemically generated hydroxyl radicals. Environmental Science and Pollution Research, 23(5), 4442–4453.CrossRefGoogle Scholar
  78. Liu, J.-N., Chen, Z., Wu, Q.-Y., Li, A., Hu, H.-Y., & Yang, C. (2016). Ozone/graphene oxide catalytic oxidation: a novel method to degrade emerging organic contaminant N, N-diethyl-m-toluamide (DEET). Scientific Reports, 6, 31405.CrossRefGoogle Scholar
  79. Liu, Z., Xu, X., Fang, J., Zhu, X., Chu, J., & Li, B. (2012). Microemulsion synthesis, characterization of bismuth oxyiodine/titanium dioxide hybrid nanoparticles with outstanding photocatalytic performance under visible light irradiation. Applied Surface Science, 258(8), 3771–3778. doi: 10.1016/j.apsusc.2011.12.025.CrossRefGoogle Scholar
  80. Loaiza-Ambuludi, S., Panizza, M., Oturan, N., & Oturan, M. A. (2014). Removal of the anti-inflammatory drug ibuprofen from water using homogeneous photocatalysis. Catalysis Today, 224, 29–33. doi: 10.1016/j.cattod.2013.12.018.CrossRefGoogle Scholar
  81. Loos, R., Carvalho, R., António, D. C., Comero, S., Locoro, G., Tavazzi, S., et al. (2013). EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research, 47(17), 6475–6487. doi: 10.1016/j.watres.2013.08.024.CrossRefGoogle Scholar
  82. Loos, R., Gawlik, B. M., Locoro, G., Rimaviciute, E., Contini, S., & Bidoglio, G. (2009). EU-wide survey of polar organic persistent pollutants in European river waters. Environmental Pollution, 157(2), 561–568. doi: 10.1016/j.envpol.2008.09.020.CrossRefGoogle Scholar
  83. Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., et al. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473, 619–641.CrossRefGoogle Scholar
  84. Lutterbeck, C. A., Machado, Ê. L., & Kümmerer, K. (2015). Photodegradation of the antineoplastic cyclophosphamide: a comparative study of the efficiencies of UV/H 2 O 2, UV/Fe 2+/H 2 O 2 and UV/TiO 2 processes. Chemosphere, 120, 538–546.CrossRefGoogle Scholar
  85. Lyu, L., Zhang, L., & Hu, C. (2015). Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres. Chemical Engineering Journal, 274, 298–306. doi: 10.1016/j.cej.2015.03.137.CrossRefGoogle Scholar
  86. Mahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6), 990–1003. doi: 10.1016/j.ultsonch.2009.09.005.CrossRefGoogle Scholar
  87. Maicu, M., Hidalgo, M. C., Colón, G., & Navío, J. A. (2011). Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol. Journal of Photochemistry and Photobiology A: Chemistry, 217(2–3), 275–283. doi: 10.1016/j.jphotochem.2010.10.020.CrossRefGoogle Scholar
  88. Maletz, S., Floehr, T., Beier, S., Klümper, C., Brouwer, A., Behnisch, P., et al. (2013). In vitro characterization of the effectiveness of enhanced sewage treatment processes to eliminate endocrine activity of hospital effluents. Water Research, 47(4), 1545–1557.CrossRefGoogle Scholar
  89. Martins, R. C., & Quinta-Ferreira, R. M. (2009). Catalytic ozonation of phenolic acids over a Mn–Ce–O catalyst. Applied Catalysis B: Environmental, 90(1), 268–277.CrossRefGoogle Scholar
  90. Maruya, K. A., Dodder, N. G., Sengupta, A., Smith, D. J., Lyons, J. M., Heil, A. T., et al. (2016). Multi‐media screening of contaminants of emerging concern (CECs) in coastal urban watersheds in Southern California (USA). Environmental Toxicology and Chemistry.Google Scholar
  91. Maruya, K. A., Schlenk, D., Anderson, P. D., Denslow, N. D., Drewes, J. E., Olivieri, A. W., et al. (2014). An adaptive, comprehensive monitoring strategy for chemicals of emerging concern (CECs) in California's aquatic ecosystems. Integrated Environmental Assessment and Management, 10(1), 69–77.CrossRefGoogle Scholar
  92. Mekonen, S., Argaw, R., Simanesew, A., Houbraken, M., Senaeve, D., Ambelu, A., et al. (2016). Pesticide residues in drinking water and associated risk to consumers in Ethiopia. Chemosphere, 162, 252–260. doi: 10.1016/j.chemosphere.2016.07.096.CrossRefGoogle Scholar
  93. Méndez-Medrano, M. G., Kowalska, E., Lehoux, A., Herissan, A., Ohtani, B., Bahena, D., et al. (2016). Surface modification of TiO2 with Ag nanoparticles and CuO nanoclusters for application in photocatalysis. The Journal of Physical Chemistry C, 120(9), 5143–5154. doi: 10.1021/acs.jpcc.5b10703.CrossRefGoogle Scholar
  94. Merel, S., Anumol, T., Park, M., & Snyder, S. A. (2015). Application of surrogates, indicators, and high-resolution mass spectrometry to evaluate the efficacy of UV processes for attenuation of emerging contaminants in water. Journal of Hazardous Materials, 282, 75–85. doi: 10.1016/j.jhazmat.2014.09.008.CrossRefGoogle Scholar
  95. Mestankova, H., Schirmer, K., Escher, B. I., von Gunten, U., & Canonica, S. (2012). Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes. Environmental Pollution, 161, 30–35. doi: 10.1016/j.envpol.2011.09.018.CrossRefGoogle Scholar
  96. Miralles-Cuevas, S., Oller, I., Agüera, A., Llorca, M., Pérez, J. S., & Malato, S. (2016). Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: acute and chronic toxicity assessment. Journal of Hazardous Materials.Google Scholar
  97. Miranda-García, N., Maldonado, M. I., Coronado, J., & Malato, S. (2010). Degradation study of 15 emerging contaminants at low concentration by immobilized TiO 2 in a pilot plant. Catalysis Today, 151(1), 107–113.CrossRefGoogle Scholar
  98. Miranda-García, N., Suárez, S., Sánchez, B., Coronado, J. M., Malato, S., & Maldonado, M. I. (2011). Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Applied Catalysis B: Environmental, 103(3–4), 294–301. doi: 10.1016/j.apcatb.2011.01.030.CrossRefGoogle Scholar
  99. Mirzaei, A., Chen, Z., Haghighat, F., & Yerushalmi, L. (2016). Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review. Sustainable Cities and Society.Google Scholar
  100. Molins-Delgado, D., Díaz-Cruz, M. S., & Barceló, D. (2016). Ecological risk assessment associated to the removal of endocrine-disrupting parabens and benzophenone-4 in wastewater treatment. Journal of Hazardous Materials, 310, 143–151.CrossRefGoogle Scholar
  101. Mousset, E., Frunzo, L., Esposito, G., Van Hullebusch, E. D., Oturan, N., & Oturan, M. A. (2016). A complete phenol oxidation pathway obtained during electro-Fenton treatment and validated by a kinetic model study. Applied Catalysis B: Environmental, 180, 189–198.CrossRefGoogle Scholar
  102. Muhamad, M. S., Salim, M. R., Lau, W. J., & Yusop, Z. (2016). A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water. Environmental Science and Pollution Research, 23(12), 11549–11567. doi: 10.1007/s11356-016-6357-2.CrossRefGoogle Scholar
  103. Munir, M., Wong, K., & Xagoraraki, I. (2011). Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Research, 45(2), 681–693. doi: 10.1016/j.watres.2010.08.033.CrossRefGoogle Scholar
  104. Muñoz, I., Rieradevall, J., Torrades, F., Peral, J., & Domènech, X. (2005). Environmental assessment of different solar driven advanced oxidation processes. Solar Energy, 79(4), 369–375. doi: 10.1016/j.solener.2005.02.014.CrossRefGoogle Scholar
  105. Murcia‐López, S., Hidalgo, M. C., & Navío, J. A. (2013). Degradation of rhodamine B/phenol mixtures in water by sun‐like excitation of a Bi2WO6–TiO2 photocatalyst. Photochemistry and Photobiology, 89(4), 832–840.CrossRefGoogle Scholar
  106. Murray, K. E., Thomas, S. M., & Bodour, A. A. (2010). Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environmental Pollution, 158(12), 3462–3471.CrossRefGoogle Scholar
  107. Naddeo, V., Landi, M., Scannapieco, D., & Belgiorno, V. (2013). Sonochemical degradation of twenty-three emerging contaminants in urban wastewater. Desalination and Water Treatment, 51(34–36), 6601–6608.CrossRefGoogle Scholar
  108. Oh, W.-D., Dong, Z., & Lim, T.-T. (2016). Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Applied Catalysis B: Environmental, 194, 169–201.CrossRefGoogle Scholar
  109. Oturan, M. A., & Aaron, J.-J. (2014). Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44(23), 2577–2641.CrossRefGoogle Scholar
  110. Padhye, L. P., Yao, H., Kung'u, F. T., & Huang, C.-H. (2014). Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Research, 51, 266–276.CrossRefGoogle Scholar
  111. Pan, X., & Xu, Y.-J. (2013). Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light. The Journal of Physical Chemistry C, 117(35), 17996–18005. doi: 10.1021/jp4064802.CrossRefGoogle Scholar
  112. Pan, X., Yang, M.-Q., Fu, X., Zhang, N., & Xu, Y.-J. (2013). Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale, 5(9), 3601–3614. doi: 10.1039/C3NR00476G.CrossRefGoogle Scholar
  113. Park, H., Park, Y., Kim, W., & Choi, W. (2013). Surface modification of TiO 2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15, 1–20.CrossRefGoogle Scholar
  114. Peng, X., Yu, Y., Tang, C., Tan, J., Huang, Q., & Wang, Z. (2008). Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Science of the Total Environment, 397(1–3), 158–166. doi: 10.1016/j.scitotenv.2008.02.059.CrossRefGoogle Scholar
  115. Pereira, M., Oliveira, L., & Murad, E. (2012). Iron oxide catalysts: Fenton and Fentonlike reactions—a review. Clay Minerals, 47(3), 285–302.CrossRefGoogle Scholar
  116. Petala, A., Frontistis, Z., Antonopoulou, M., Konstantinou, I., Kondarides, D. I., & Mantzavinos, D. (2015). Kinetics of ethyl paraben degradation by simulated solar radiation in the presence of N-doped TiO2 catalysts. Water Research, 81, 157–166. doi: 10.1016/j.watres.2015.05.056.CrossRefGoogle Scholar
  117. Pisarenko, A. N., Marti, E. J., Gerrity, D., Peller, J. R., & Dickenson, E. R. V. (2015). Effects of molecular ozone and hydroxyl radical on formation of N-nitrosamines and perfluoroalkyl acids during ozonation of treated wastewaters. Environmental Science: Water Research & Technology, 1(5), 668–678. doi: 10.1039/C5EW00046G.Google Scholar
  118. Prasse, C., Wagner, M., Schulz, R., & Ternes, T. A. (2012). Oxidation of the antiviral drug acyclovir and its biodegradation product carboxy-acyclovir with ozone: kinetics and identification of oxidation products. Environmental Science & Technology, 46(4), 2169–2178. doi: 10.1021/es203712z.CrossRefGoogle Scholar
  119. Prieto-Rodriguez, L., Miralles-Cuevas, S., Oller, I., Agüera, A., Puma, G. L., & Malato, S. (2012). Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO 2 concentrations. Journal of Hazardous Materials, 211, 131–137.CrossRefGoogle Scholar
  120. Prieto-Rodríguez, L., Spasiano, D., Oller, I., Fernandez-Calderero, I., Agüera, A., & Malato, S. (2013). Solar photo-Fenton optimization for the treatment of MWTP effluents containing emerging contaminants. Catalysis Today, 209, 188–194.CrossRefGoogle Scholar
  121. Pruden, A. (2014). Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Environmental Science & Technology, 48(1), 5–14. doi: 10.1021/es403883p.CrossRefGoogle Scholar
  122. Pycke, B. F. G., Roll, I. B., Brownawell, B. J., Kinney, C. A., Furlong, E. T., Kolpin, D. W., et al. (2014). Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States. Environmental Science & Technology, 48(14), 7881–7890. doi: 10.1021/es5006362.CrossRefGoogle Scholar
  123. Rayaroth, M. P., Aravind, U. K., & Aravindakumar, C. T. (2016). Ultrasound based AOP for emerging pollutants: from degradation to mechanism. Environmental Science and Pollution Research, 1-9.Google Scholar
  124. Ribeiro, R. S., Silva, A. M. T., Figueiredo, J. L., Faria, J. L., & Gomes, H. T. (2016). Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review. Applied Catalysis B: Environmental, 187, 428–460. doi: 10.1016/j.apcatb.2016.01.033.CrossRefGoogle Scholar
  125. Richardson, S. D. (2011). Environmental mass spectrometry: emerging contaminants and current issues. Analytical Chemistry, 84(2), 747–778.CrossRefGoogle Scholar
  126. Richardson, S. D., & Kimura, S. Y. (2016). Water analysis: emerging contaminants and current issues. Analytical Chemistry, 88(1), 546–582. doi: 10.1021/acs.analchem.5b04493.CrossRefGoogle Scholar
  127. Roberts, J., Kumar, A., Du, J., Hepplewhite, C., Ellis, D. J., Christy, A. G., et al. (2016). Pharmaceuticals and personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Science of the Total Environment, 541, 1625–1637.CrossRefGoogle Scholar
  128. Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sànchez-Melsió, A., et al. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69, 234–242. doi: 10.1016/j.watres.2014.11.021.CrossRefGoogle Scholar
  129. Romão, J., & Mul, G. (2016). Substrate specificity in photocatalytic degradation of mixtures of organic contaminants in water. ACS Catalysis, 6(2), 1254–1262. doi: 10.1021/acscatal.5b02015.CrossRefGoogle Scholar
  130. Samaras, V. G., Stasinakis, A. S., Mamais, D., Thomaidis, N. S., & Lekkas, T. D. (2013). Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion. Journal of Hazardous Materials, 244–245, 259–267, doi: 10.1016/j.jhazmat.2012.11.039.
  131. Sathishkumar, P., Mangalaraja, R. V., & Anandan, S. (2016). Review on the recent improvements in sonochemical and combined sonochemical oxidation processes—a powerful tool for destruction of environmental contaminants. Renewable and Sustainable Energy Reviews, 55, 426–454.CrossRefGoogle Scholar
  132. Schenone, A. V., Conte, L. O., Botta, M. A., & Alfano, O. M. (2015). Modeling and optimization of photo-Fenton degradation of 2,4-D using ferrioxalate complex and response surface methodology (RSM). Journal of Environmental Management, 155, 177–183. doi: 10.1016/j.jenvman.2015.03.028.CrossRefGoogle Scholar
  133. Scheurer, M., Brauch, H.-J., & Lange, F. T. (2009). Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT). [journal article]. Analytical and Bioanalytical Chemistry, 394(6), 1585–1594. doi: 10.1007/s00216-009-2881-y.CrossRefGoogle Scholar
  134. Schlüter-Vorberg, L., Prasse, C., Ternes, T. A., Mückter, H., & Coors, A. (2015). Toxification by transformation in conventional and advanced wastewater treatment: the antiviral drug acyclovir. Environmental Science & Technology Letters, 2(12), 342–346.CrossRefGoogle Scholar
  135. Sengupta, A., Lyons, J. M., Smith, D. J., Drewes, J. E., Snyder, S. A., Heil, A., et al. (2014). The occurrence and fate of chemicals of emerging concern in coastal urban rivers receiving discharge of treated municipal wastewater effluent. Environmental Toxicology and Chemistry, 33(2), 350–358.CrossRefGoogle Scholar
  136. Serna-Galvis, E. A., Giraldo-Aguirre, A. L., Silva-Agredo, J., Flórez-Acosta, O. A., & Torres-Palma, R. A. (2016a). Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity. [journal article]. Environmental Science and Pollution Research, 1–14, doi: 10.1007/s11356-016-6257-5.
  137. Serna-Galvis, E. A., Silva-Agredo, J., Giraldo-Aguirre, A. L., Flórez-Acosta, O. A., & Torres-Palma, R. A. (2016b). High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water. Ultrasonics Sonochemistry, 31, 276–283. doi: 10.1016/j.ultsonch.2016.01.007.CrossRefGoogle Scholar
  138. Shankaraiah, G., Poodari, S., Bhagawan, D., Himabindu, V., & Vidyavathi, S. (2016). Degradation of antibiotic norfloxacin in aqueous solution using advanced oxidation processes (AOPs)—a comparative study. Desalination and Water Treatment, 1–12.Google Scholar
  139. Shetty, R., Chavan, V. B., Kulkarni, P. S., Kulkarni, B. D., & Kamble, S. P. (2016). Photocatalytic degradation of pharmaceuticals pollutants using N-doped TiO2 photocatalyst: identification of CFX degradation intermediates. Indian Chemical Engineer, 1–23.Google Scholar
  140. Sodré, F. F., Locatelli, M. A. F., & Jardim, W. F. (2010). Occurrence of emerging contaminants in Brazilian drinking waters: a sewage-to-tap issue. Water, Air, and Soil Pollution, 206(1–4), 57–67.CrossRefGoogle Scholar
  141. Sorensen, J. P. R., Lapworth, D. J., Nkhuwa, D. C. W., Stuart, M. E., Gooddy, D. C., Bell, R. A., et al. (2015). Emerging contaminants in urban groundwater sources in Africa. Water Research, 72, 51–63. doi: 10.1016/j.watres.2014.08.002.CrossRefGoogle Scholar
  142. Stasinakis, A. S., Gatidou, G., Mamais, D., Thomaidis, N. S., & Lekkas, T. D. (2008). Occurrence and fate of endocrine disrupters in Greek sewage treatment plants. Water Research, 42(6), 1796–1804.CrossRefGoogle Scholar
  143. Su, C.-C., Chang, A.-T., Bellotindos, L. M., & Lu, M.-C. (2012). Degradation of acetaminophen by Fenton and electro-Fenton processes in aerator reactor. Separation and Purification Technology, 99, 8–13. doi: 10.1016/j.seppur.2012.07.004.CrossRefGoogle Scholar
  144. Sui, Q., Cao, X., Lu, S., Zhao, W., Qiu, Z., & Yu, G. (2015). Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. Emerging Contaminants, 1(1), 14–24. doi: 10.1016/j.emcon.2015.07.001.CrossRefGoogle Scholar
  145. Sun, B., Guan, X., Fang, J., & Tratnyek, P. G. (2015). Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: the involvement of Mn (III). Environmental Science & Technology, 49(20), 12414–12421.CrossRefGoogle Scholar
  146. Sun, D., Li, J., He, L., Zhao, B., Wang, T., Li, R., et al. (2014a). Facile solvothermal synthesis of BiOCl–TiO 2 heterostructures with enhanced photocatalytic activity. CrystEngComm, 16(32), 7564–7574.CrossRefGoogle Scholar
  147. Sun, Q., Lv, M., Hu, A., Yang, X., & Yu, C.-P. (2014b). Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China. Journal of Hazardous Materials, 277, 69–75. doi: 10.1016/j.jhazmat.2013.11.056.CrossRefGoogle Scholar
  148. Tang, H., Xiang, Q., Lei, M., Yan, J., Zhu, L., & Zou, J. (2012). Efficient degradation of perfluorooctanoic acid by UV–Fenton process. Chemical Engineering Journal, 184, 156–162. doi: 10.1016/j.cej.2012.01.020.CrossRefGoogle Scholar
  149. Tijani, J. O., Fatoba, O. O., Babajide, O. O., & Petrik, L. F. (2016). Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. [Review]. Environmental Chemistry Letters, 14(1), 27–49. doi: 10.1007/s10311-015-0537-z.CrossRefGoogle Scholar
  150. Tran, N., Drogui, P., & Brar, S. K. (2015). Sonochemical techniques to degrade pharmaceutical organic pollutants. [journal article]. Environmental Chemistry Letters, 13(3), 251–268. doi: 10.1007/s10311-015-0512-8.CrossRefGoogle Scholar
  151. Trovó, A. G., Nogueira, R. F. P., Agüera, A., Fernandez-Alba, A. R., Sirtori, C., & Malato, S. (2009). Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Research, 43(16), 3922–3931. doi: 10.1016/j.watres.2009.04.006.CrossRefGoogle Scholar
  152. Ullattil, S. G., Periyat, P., Naufal, B., & Lazar, M. A. (2016). Self-doped ZnO microrods-high temperature stable oxygen deficient platforms for solar photocatalysis. Industrial & Engineering Chemistry Research.Google Scholar
  153. Venier, M., Dove, A., Romanak, K., Backus, S., & Hites, R. (2014). Flame retardants and legacy chemicals in Great Lakes’ water. Environmental Science & Technology, 48(16), 9563–9572. doi: 10.1021/es501509r.CrossRefGoogle Scholar
  154. Vulliet, E., & Cren-Olivé, C. (2011). Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environmental Pollution, 159(10), 2929–2934. doi: 10.1016/j.envpol.2011.04.033.CrossRefGoogle Scholar
  155. Wang, C.-K., & Shih, Y.-H. (2016). Facilitated ultrasonic irradiation in the degradation of diazinon insecticide. Sustainable Environment Research, 26(3), 110–116. doi: 10.1016/j.serj.2016.04.003.CrossRefGoogle Scholar
  156. Wang, C.-Y., Zhang, X., Song, X.-N., Wang, W.-K., & Yu, H.-Q. (2016a). Novel Bi12O15Cl6 photocatalyst for the degradation of bisphenol A under visible-light irradiation. ACS Applied Materials & Interfaces, 8(8), 5320–5326.CrossRefGoogle Scholar
  157. Wang, C., & Liu, C. (2014). Decontamination of alachlor herbicide wastewater by a continuous dosing mode ultrasound/Fe2+/H2O2 process. Journal of Environmental Sciences, 26(6), 1332–1339. doi: 10.1016/S1001-0742(13)60608-7.CrossRefGoogle Scholar
  158. Wang, L., Cao, M., Ai, Z., & Zhang, L. (2015a). Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous–tetrapolyphosphate complex. Environmental Science & Technology, 49(5), 3032–3039. doi: 10.1021/es505984y.CrossRefGoogle Scholar
  159. Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016b). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762–787. doi: 10.1016/j.jece.2015.12.016. CrossRefGoogle Scholar
  160. Wang, W., Zhu, D., Shen, Z., Peng, J., Luo, J., & Liu, X. (2016c). One-pot hydrothermal route to synthesize the Bi-doped anatase TiO2 hollow thin sheets with prior facet exposed for enhanced visible-light-driven photocatalytic activity. Industrial & Engineering Chemistry Research.Google Scholar
  161. Wang, X. J., Yang, W. Y., Li, F. T., Zhao, J., Liu, R. H., Liu, S. J., et al. (2015b). Construction of amorphous TiO2/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity. Journal of Hazardous Materials, 292, 126–136. doi: 10.1016/j.jhazmat.2015.03.030.CrossRefGoogle Scholar
  162. Wei, X.-X., Cui, H., Guo, S., Zhao, L., & Li, W. (2013). Hybrid BiOBr–TiO2 nanocomposites with high visible light photocatalytic activity for water treatment. Journal of Hazardous Materials, 263(Part 2), 650–658. doi: 10.1016/j.jhazmat.2013.10.027.CrossRefGoogle Scholar
  163. Xiang, N., Chen, L., Meng, X.-Z., Li, Y.-L., Liu, Z., Wu, B., et al. (2014). Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) in a conventional wastewater treatment plant (WWTP) in Shanghai: seasonal variations and potential sources. Science of the Total Environment, 487, 342–349.CrossRefGoogle Scholar
  164. Xiao, J., Xie, Y., Cao, H., Nawaz, F., Zhang, S., & Wang, Y. (2016). Disparate roles of doped metal ions in promoting surface oxidation of TiO 2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 315, 59–66.CrossRefGoogle Scholar
  165. Xiong, X., & Xu, Y. (2016). Synergetic effect of Pt and borate on the TiO2-photocatalyzed degradation of phenol in water. The Journal of Physical Chemistry C, 120(7), 3906–3912. doi: 10.1021/acs.jpcc.5b11923.CrossRefGoogle Scholar
  166. Xu, L., Chu, W., & Graham, N. (2013). A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process. Ultrasonics Sonochemistry, 20(3), 892–899.CrossRefGoogle Scholar
  167. Xu, Z., Wang, L., Yin, H., Li, H., & Schwegler, B. R. (2016). Source apportionment of non-storm water entries into storm drains using marker species: modeling approach and verification. Ecological Indicators, 61(Part 2), 546–557. doi: 10.1016/j.ecolind.2015.10.006.CrossRefGoogle Scholar
  168. Yan, C., Nie, M., Yang, Y., Zhou, J., Liu, M., Baalousha, M., et al. (2015). Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters. Journal of Hazardous Materials, 299, 241–248. doi: 10.1016/j.jhazmat.2015.06.022.CrossRefGoogle Scholar
  169. Yan, Q., Gao, X., Chen, Y.-P., Peng, X.-Y., Zhang, Y.-X., Gan, X.-M., et al. (2014). Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area. Science of the Total Environment, 470–471, 618–630. doi: 10.1016/j.scitotenv.2013.09.032.CrossRefGoogle Scholar
  170. Yang, B., Zuo, J., Li, P., Wang, K., Yu, X., & Zhang, M. (2016a). Effective ultrasound electrochemical degradation of biological toxicity and refractory cephalosporin pharmaceutical wastewater. Chemical Engineering Journal, 287, 30–37. doi: 10.1016/j.cej.2015.11.033.CrossRefGoogle Scholar
  171. Yang, Y., Pignatello, J. J., Ma, J., & Mitch, W. A. (2016b). Effect of matrix components on UV/H2O2 and UV/ S2O8 2−advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Research, 89, 192–200.CrossRefGoogle Scholar
  172. Yola, M. L., Eren, T., & Atar, N. (2014). A novel efficient photocatalyst based on TiO2 nanoparticles involved boron enrichment waste for photocatalytic degradation of atrazine. [Article]. Chemical Engineering Journal, 250, 288–294. doi: 10.1016/j.cej.2014.03.116.CrossRefGoogle Scholar
  173. Zainudin, N. F., Abdullah, A. Z., & Mohamed, A. R. (2010). Characteristics of supported nano-TiO2/ZSM-5/silica gel (SNTZS): photocatalytic degradation of phenol. Journal of Hazardous Materials, 174(1–3), 299–306. doi: 10.1016/j.jhazmat.2009.09.051.CrossRefGoogle Scholar
  174. Zhang, J., Zhang, J., Liu, R., Gan, J., Liu, J., & Liu, W. (2016). Endocrine-disrupting effects of pesticides through interference with human glucocorticoid receptor. Environmental Science & Technology, 50(1), 435–443. doi: 10.1021/acs.est.5b03731.CrossRefGoogle Scholar
  175. Zhang, T., Li, C., Ma, J., Tian, H., & Qiang, Z. (2008). Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone: property and activity relationship. Applied Catalysis B: Environmental, 82(1), 131–137.CrossRefGoogle Scholar
  176. Zhang, X., Zhang, L., Xie, T., & Wang, D. (2009). Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. The Journal of Physical Chemistry C, 113(17), 7371–7378.CrossRefGoogle Scholar
  177. Zhao, J.-L., Ying, G.-G., Liu, Y.-S., Chen, F., Yang, J.-F., & Wang, L. (2010). Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: from source to the receiving environment. Journal of Hazardous Materials, 179(1–3), 215–222. doi: 10.1016/j.jhazmat.2010.02.082.CrossRefGoogle Scholar
  178. Zhoa, Q., Ge, Y., Zuo, P., Shi, D., & Jia, S. (2016). Degradation of Thiamethoxam in aqueous solution by ozonation: influencing factors, intermediates, degradation mechanism and toxicity assessment. Chemosphere, 146, 105–112. doi: 10.1016/j.chemosphere.2015.09.009.CrossRefGoogle Scholar
  179. Zonja, B., Gonçalves, C., Pérez, S., Delgado, A., Petrovic, M., Alpendurada, M. F., et al. (2014). Evaluation of the phototransformation of the antiviral zanamivir in surface waters through identification of transformation products. Journal of Hazardous Materials, 265, 296–304. doi: 10.1016/j.jhazmat.2013.10.008.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maryam Salimi
    • 1
  • Ali Esrafili
    • 1
  • Mitra Gholami
    • 1
  • Ahmad Jonidi Jafari
    • 1
  • Roshanak Rezaei Kalantary
    • 1
  • Mahdi Farzadkia
    • 1
  • Majid Kermani
    • 1
  • Hamid Reza Sobhi
    • 2
  1. 1.Department of Environmental Health Engineering, School of Public HealthIran University of Medical SciencesTehranIran
  2. 2.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations