Advertisement

Chironomidae traits and life history strategies as indicators of anthropogenic disturbance

  • Sónia R.Q. Serra
  • Manuel A.S. Graça
  • Sylvain Dolédec
  • Maria João Feio
Article

Abstract

In freshwater ecosystems, Chironomidae are currently considered indicators of poor water quality because the family is often abundant in degraded sites. However, it incorporates taxa with a large ecological and physiological diversity and different sensitivity to impairment. Yet, the usual identification of Chironomidae at coarse taxonomic levels (family or subfamily) masks genus and species sensitivities. In this study, we investigate the potential of taxonomic and functional (traits) composition of Chironomidae to detect anthropogenic disturbance. In this context, we tested some a priori hypotheses regarding the ability of Chironomidae taxonomic and trait compositions to discriminate Mediterranean streams affected by multiple stressors from least-disturbed streams. Both taxonomic and Eltonian trait composition discriminated sites according to their disturbance level. Disturbance resulted in the predicted increase of Chironomidae with higher number of stages with hibernation/diapause and of taxa with resistance forms and unpredicted increase of the proportion of taxa with longer life cycles and few generations per year. Life history strategies (LHS), corresponding to multivoltine Chironomidae that do not invest in hemoglobin and lack strong spring synchronization, were well adapted to all our Mediterranean sites with highly changeable environmental conditions. Medium-size animals favored in disturbed sites where the Mediterranean hydrological regime is altered, but the reduced number of larger-size/carnivore Chironomids suggests a limitation to secondary production. Results indicate that Chironomidae genus and respective traits could be a useful tool in the structural and functional assessment of Mediterranean streams. The ubiquitous nature of Chironomidae should be also especially relevant in the assessment of water bodies naturally poor in other groups such as the Ephemeroptera, Plecoptera, and Trichoptera, such as the lowland rivers with sandy substrates, lakes, or reservoirs.

Keywords

Diptera Bioassessment Biological traits Life history strategies 

Notes

Acknowledgments

This work was made possible by the strategic project (UID/MAR/04292/2013) granted to MARE and the PhD scholarship (SFRH/BD/80188/2011) of first author both granted by the Portuguese Foundation for Science and Technology (FCT); the co-tutelage between the University of Coimbra and the University of Lyon 1; and the cooperation between the MARE, University of Coimbra, Portugal, and the LEHNA–Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, University of Lyon, France. The identification was supported by Narcís Prat from the Research Group Freshwater Ecology and Management (F.E.M.), from the Department of Ecology of the University of Barcelona, Spain.

References

  1. Andersen, T., Cranston, P. S., & Epler, J. H. (Eds.) (2013). Chironomidae of the Holartic Region. Keys and diagnoses—larvae. Lund, Sweden: Insect Systematics and Evolution, Supplement 66.Google Scholar
  2. Armitage, P., Cranston, P. S., & Pinder, L. C. V. (Eds.). (1995). The Chironomidae. The biology and ecology of non-biting midges. London: Chapman & Hall.Google Scholar
  3. Bazzanti, M., Seminara, M., & Baldoni, S. (1997). Chironomids (Diptera: Chironomidae) from three temporary ponds of different wet phase duration in Central Italy. Journal of Freshwater Ecology, 12(1), 89–99.CrossRefGoogle Scholar
  4. Bêche, L. A., & Statzner, B. (2009). Richness gradients of stream invertebrates across the USA: taxonomy- and trait-based approaches. Biodiversity and Conservation, 18, 3909–3930.CrossRefGoogle Scholar
  5. Bonada, N., Rieradevall, M., Prat, N., & Resh, V. H. (2006a). Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of northern California. Journal of the North American Benthological Society, 25(1), 32–43.CrossRefGoogle Scholar
  6. Bonada, N., Prat, N., Resh, V. H., & Statzner, B. (2006b). Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology, 51, 495–523.CrossRefGoogle Scholar
  7. Bonada, N., Dolédec, S., & Statzner, B. (2007). Taxonomic and biological trait differences of stream macroinvertebrate communities between Mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology, 13(8), 1658–1671.CrossRefGoogle Scholar
  8. Calle-Martínez, D., & Casas, J. J. (2006). Chironomid species, stream classification, and water-quality assessment: the case of 2 Iberian Mediterranean mountain regions. Journal of the North American Benthological Society, 25(2), 465–476.CrossRefGoogle Scholar
  9. Camargo, J. A., Alonso, A., & De la Puente, M. (2004). Multimetric assessment of nutrient enrichment impounded rivers based on benthic macroinvertebrates. Environmental Monitoring and Assessment, 96(1–3), 233–249.CrossRefGoogle Scholar
  10. Casas, J. J., & Langton, P. H. (2008). Chironomid species richness of a permanent and a temporary Mediterranean stream: a long-term comparative study. Journal of the North American Benthological Society, 27(3), 746–759.CrossRefGoogle Scholar
  11. Chaib, N., Samraoui, B., Marziali, L., & Rossaro, B. (2011). Chironomid taxocenosis in a South Mediterranean wadi, the Kebir-East (Algeria). Studi Trentini di Scienze Naturali, 88, 61–75.Google Scholar
  12. Chang, F.-H., Lawrence, J. E., Rios-Touma, B., & Resh, V. H. (2014). Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions underlying scoring systems worldwide. Environmental Monitoring and Assessment, 186(4), 2135–2149.CrossRefGoogle Scholar
  13. Charvet, S., Roger, M. C., Faessel, B., & Lafont, M. (1998). Évaluation de l’état de santé écologique des hydrosystèmes par l’utilisation des traits biologiques. Annales de Limnologie, 34(4), 445–464.CrossRefGoogle Scholar
  14. Chessel, D., Dufour, A. B., & Thioulouse, J. (2004). The ade4 package—I: one-table methods. R News, 4(1), 5–10.Google Scholar
  15. Chevenet, F., Dolédec, S., Chessel, D. (1994). A Fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology, 31(3), 295–309.Google Scholar
  16. Cranston, P. S. (1982). A key to the larvae of the British Orthocladiinae (Chironomidae). Ambleside: Freshwater Biological Associations Scientific Publication n° 45.Google Scholar
  17. Cross, W. F., Johnson, B. R., Wallace, J. B., & Rosemond, A. D. (2005). Contrasting response of stream detritivores to long-term nutrient enrichment. Limnology and Oceanography, 50(6), 1730–1739.CrossRefGoogle Scholar
  18. Cross, W. F., Wallace, J. B., Rosemond, A. D., & Eggert, S. L. (2006). Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology, 87(6), 1556–1565.CrossRefGoogle Scholar
  19. Cundari, T. R., Sârbu, C., & Pop, H. F. (2002). Robust fuzzy principal component analysis (FPCA). A comparative study concerning interaction of carbon-hydrogen bonds with molybdenum-oxo bonds. Journal of Chemical Information and Modeling, 42(6), 1363–1369.Google Scholar
  20. De Haas, E. M., & Kraak, M. H. S. (2008). Species-specific responses of two benthic invertebrates explain their distribution along environmental gradients in freshwater habitats. Science of the Total Environment, 406(3), 430–435.CrossRefGoogle Scholar
  21. De Haas, E. M., Van Haaren, R., Koelmans, A. A., Kraak, M. H. S., & Admiraal, W. (2005). Analyzing the causes for the persistence of chironomids in floodplain lake sediments. Archiv für Hydrobiologie, 162(2), 211–228.CrossRefGoogle Scholar
  22. Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., Venail, P., Villéger, S., & Mouquet, N. (2010). Defining and measuring ecological specialization. Journal of Applied Ecology, 47(1), 15–25.CrossRefGoogle Scholar
  23. Díaz, A. M., Alonso, M. L. S., & Gutiérrez, M. R. V. (2008). Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshwater Biology, 53(1), 1–21.Google Scholar
  24. Dolédec, S., & Chessel, D. (1987). Rythmes saisonniers et composantes stationnelles en milieu aquatique. I. Description d’un plan d’observation complet par projection de variables. Acta Oecologica, 8, 403–426.Google Scholar
  25. Dolédec, S., & Statzner, B. (2008). Invertebrate traits for the biomonitoring of large European rivers: an assessment of specific types of human impact. Freswater Biology, 53, 617–634.CrossRefGoogle Scholar
  26. Dolédec, S., & Statzner, B. (2010). Responses of freshwater biota to human disturbances: contribution of J-NABS to developments in ecological integrity assessments. Journal of the North American Benthological Society, 29(1), 286–311.CrossRefGoogle Scholar
  27. Dray, S., & Dufour, A. B. (2007a). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20.CrossRefGoogle Scholar
  28. Dray, S., Dufour, A. B., & Chessel, D. (2007b). The ade4 package—II: two-table and K-table methods. R News, 7(2), 47–52.Google Scholar
  29. Feio, M. J., & Dolédec, S. (2012). Integration of invertebrate traits into predictive models for indirect assessment of stream functional integrity: a case study in Portugal. Ecological Indicators, 15(1), 236–247.CrossRefGoogle Scholar
  30. Feio, M. J., Coimbra, C. N., Graça, M. A. S., Nichols, S. J., & Norris, R. H. (2010). The influence of extreme climatic events and human disturbance on macroinvertebrate community patterns of a Mediterranean stream over 15 y. Journal of the North American Benthological Society, 29(4), 1397–1409.CrossRefGoogle Scholar
  31. Franquet, E. (1996). Occupation d'un espace fluvial par les Diptères Chironomidés à l'aval du Rhône: répartition des espèces selon la nature du substrat et les conditions de débit. Villeurbanne, France: Université Lyon 1.Google Scholar
  32. Gayraud, S., Statzner, B., Bady, P., Haybachp, A., Schöll, F., Usseglio-Polatera, P., & Bacchi, M. (2003). Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of alternative metrics. Freshwater Biology, 48(11), 2045–2064.CrossRefGoogle Scholar
  33. Greenwood, M. J., & Booker, D. J. (2016). Influence of hydrological regime and land cover on traits and potential export capacity of adult aquatic insects from river channels. Oecologia, 180(2), 551–566.CrossRefGoogle Scholar
  34. Hawkes, H. A. (1998). Origin and development of the biological monitoring working party score system. Water Research, 32(1), 964–968.CrossRefGoogle Scholar
  35. Hawkins, C. P., & Norris, R. H. (2000). Effects of taxonomic resolution and use of subsets of fauna on the performance of RIVPACS-type models, chapter 15. In J. F. Wright, D. W. Sutcliffe, & M. T. Furse (Eds.), Assessing the biological quality of freshwaters RIVPACS and other techniques (pp. 217–228). Ambleside: Freshwater Biological Association.Google Scholar
  36. Hawkins, C. P., Olson, J. R., & Hill, R. A. (2010). The reference condition: predicting benchmarks for ecological and water-quality assessments. Journal of the North American Benthological Society, 29(1), 312–343.CrossRefGoogle Scholar
  37. INAG. (2008). Manual para a avaliação biológica da qualidade da água em sistemas fluviais segundo a directiva quadro da água. Protocolo de amostragem e análise para os macroinvertebrados bentónicos. Portugal: Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional, Instituto da Água, I. P.Google Scholar
  38. Lange, K., Twonsend, C. R., & Matthaei, C. D. (2014). Can biological traits of stream invertebrates help disentangle the effects of multiple stressors in an agricultural catchment? Freshwater Biology, 59(12), 2431–2446.CrossRefGoogle Scholar
  39. Langton, P. H., & Casas, J. (1999). Changes in chironomid assemblage composition in two Mediterranean mountain streams over a period of extreme hydrological conditions. Hydrobiologia, 390(1), 37–49.Google Scholar
  40. Lebreton, J. D., Sabatier, R., Banco, G., & Bacou, A. M. (1991). Principal component and correspondence analyses with respect to instrumental variables: an overview of their role in studies of structure-activity and species-environment relationships. In J. Devillers & W. Karcher (Eds.), Applied multivariate analysis in SAR and environmental studies (pp. 85–114). Dordrecht: Kluwer.CrossRefGoogle Scholar
  41. Lencioni, V., Marziali, L., & Rossaro, B. (2007). I Ditteri Chironomidi. Morfologia, tassonomia, ecologia, fisiologia e zoogeografia. Quaderni del Museu Tridentino di Scienze Naturali, 1. Trento: Museo Tridentino di Scienze Naturali.Google Scholar
  42. Lencioni, V., Marziali, L., & Rossaro, B. (2012). Chironomids as bioindicators of environmental quality in mountain springs. Freshwater Science, 31(2), 525–541.CrossRefGoogle Scholar
  43. Lindegaard, C. (1995). Classification of water-bodies and pollution. In P. Armitage, P. S. Cranston, & L. C. V. Pinder (Eds.), The Chironomidae. The biology and ecology of non-biting midges (pp. 385–404). London: Chapman & Hall.Google Scholar
  44. Maasri, A., Fayolle, S., Gandouin, E., Garnier, R., & Franquet, E. (2008). Epilithic chironomid larvae and water enrichment: is larval distribution explained by epilithon quantity or quality? Journal of the North American Benthological Society, 27(1), 38–51.CrossRefGoogle Scholar
  45. Marziali, L., Giordano, A., Cazzola, M., Erba, S., Toppi, E., Buffagni, A., & Rossaro, B. (2010). Responses of Chironomid larvae (Insecta, Diptera) to ecological quality in Mediterranean river mesohabitats (South Italy). River Research and Applications, 26(8), 1036–1051.Google Scholar
  46. Menezes, S., Baird, D. J., & Soares, A. M. V. M. (2010). Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. Journal of Applied Ecology, 47(4), 711–719.CrossRefGoogle Scholar
  47. Moller Pillot, H. K. M. (2009). Chironomidae larvae—biology and ecology of the Chironomini—volume II. Zeist: KNNV Publishing.Google Scholar
  48. Mondy, C. P., & Usseglio-Polatera, P. (2014). Using fuzzy-coded traits to elucidate the non-random role of anthropogenic stress in the functional homogenization of invertebrate assemblages. Freshwater Biology, 59, 584–600.CrossRefGoogle Scholar
  49. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2015). Vegan: community ecology package. R package version 2.3–0. https://cran.r-project.org/web/packages/vegan/ Accessed in 17 May 2016.
  50. Poff, N. L., Olden, J. D., Vieira, N. K. M., Finn, D. S., Simmons, M. P., & Kondratieff, B. C. (2006). Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society, 25(4), 730–755.CrossRefGoogle Scholar
  51. Oliveira, S. V., & Cortes, R. M. V. (2006). Environmental indicators of ecological integrity and their development for running waters in northern Portugal. Limnetica, 25(1–2), 479–498.Google Scholar
  52. Poff, N. L. (1997). Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society, 16(2), 391–409.CrossRefGoogle Scholar
  53. Postma, J. F., Van Kleunen, A., & Admiraal, W. (1995). Alterations in life-history traits of Chironomus riparius (Diptera) obtained from metal contaminated rivers. Archives of Environmental Contamination and Toxicology, 29(4), 469–475.CrossRefGoogle Scholar
  54. Prat, N., & Rieradevall, M. (2014). Guia para el reconocimiento de las larvas de Chironomidae (DIPTERA) de los ríos mediterráneos. Version 1. http://hdl.handle.net/2445/60584 Accessed in 17 May 2016.
  55. Puntí, T., Rieradevall, M., & Prat, N. (2007). Chironomidae assemblages in reference condition Mediterranean streams: environmental factors, seasonal variability and ecotypes. Fundamental and Applied Limnology, 170(2), 149–165.CrossRefGoogle Scholar
  56. Puntí, T., Rieradevall, M., & Prat, N. (2009). Environmental factors, spatial variation, and specific requirements of Chironomidae in Mediterranean reference streams. Journal of the North American Benthological Society, 28(1), 247–265.CrossRefGoogle Scholar
  57. R Core Team (2015). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/ Accessed in 17 May 2016.
  58. Reice, S. R. (1991). Effects of detritus loading and fish predation on leafpack breakdown and benthic macroinvertebrates in a woodland stream. Journal of the North American Benthological Society, 10(1), 42–56.CrossRefGoogle Scholar
  59. Robert, P., & Escoufier, Y. (1976). A unifying tool for linear multivariate statistical methods: the RV-coefficient. Applied Statistics, 25(3), 257–265.CrossRefGoogle Scholar
  60. Romesburg, H. C. (1985). Exploring, confirming and randomization tests. Computers and Geosciences, 11(1), 19–37.CrossRefGoogle Scholar
  61. Saether, O. A. (1979). Chironomid communities as water quality indicators. Holarctic Ecology, 2(2), 65–74.Google Scholar
  62. Sârbu, C., & Pop, H. F. (2005). Principal component analysis versus fuzzy principal component analysis. A case study: the quality of danube water (1985–1996). Talanta, 65(5), 1215–1220.CrossRefGoogle Scholar
  63. Seire, A., & Pall, P. (2000). Chironomid larvae (Diptera, Chironomidae) as indicators of water quality in Estonian streams. Proceedings of the Estonian Academy of Sciences, Biology, Ecology, 49(4), 307–316.Google Scholar
  64. Serra, S. R. Q., Cobo, F., Graça, M. A. S., Dolédec, S., & Feio, M. J. (2016). Synthesising the trait information of European Chironomidae (Insecta: Diptera): toward a new database. Ecological Indicators, 61(2), 282–292.CrossRefGoogle Scholar
  65. Serra, S. R. Q., Graça, M. A. S., Dolédec, S., & Feio, M. J. (2017). Discriminating permanent from temporary rivers with traits of chironomid genera. Annales de Limnologie - International Journal of Limnology, 53, 161–174.CrossRefGoogle Scholar
  66. Servia, M. J., Cobo, F., & González, M. A. (2000). Seasonal and interannual variations in the frequency and severity of deformities in larvae of Chironomus riparius (Meigen, 1804) and Prodiamesa olivacea (Meigen, 1818) (Diptera, Chironomidae) collected in a polluted site. Environmental Monitoring and Assessment, 64(3), 617–626.CrossRefGoogle Scholar
  67. Statzner, B. (2008). How views about flow adaptations of benthic stream invertebrates changed over the last century. International Review of Hydrobiology, 93(4–5), 593–605.CrossRefGoogle Scholar
  68. Statzner, B., & Bêche, L. A. (2010). Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology, 55(1), 80–119.Google Scholar
  69. Statzner, B., Bis, B., Dolédec, S., & Usseglio-Polatera, P. (2001). Perspectives for biomonitoring at large spatial scales: a unified measure for the functional composition of invertebrate communities in European running waters. Basic and Applied Ecology, 2(1), 76–85.CrossRefGoogle Scholar
  70. Stewart, E. M., McIver, R., Michelutti, N., Douglas, M. S. V., & Smol, J. P. (2014). Assessing the efficacy of chironomid and diatom assemblages in tracking eutrophication in High Arctic sewage ponds. Hydrobiologia, 721(1), 251–268.CrossRefGoogle Scholar
  71. Stuijfzand, S. C., Helms, M., Kraak, M. H. S., & Admiraal, W. (2000). Interacting effects of toxicants and organic matter on the midge Chironomus riparius in polluted river water. Ecotoxicology and Environmental Safety, 46(3), 351–356.CrossRefGoogle Scholar
  72. Ter Braak, C. F. J. (1988). Partial canonical correspondence analysis. In H. H. Bock (Ed.), Classification and related methods of data analysis (pp. 551–558). Amsterdam: North-Holland.Google Scholar
  73. Thioulouse, J., Chessel, D., Dolédec, S., & Olivier, J. M. (1997). ADE-4: a multivariate analysis and graphical display software. Statistics and Computing, 7(1), 75–83.CrossRefGoogle Scholar
  74. Tokeshi, M. (1995). Production ecology. In P. Armitage, P. S. Cranston, & L. C. V. Pinder (Eds.), The Chironomidae. The biology and ecology of non-biting midges (pp. 269–296). London: Chapman & Hall.Google Scholar
  75. Van Kleef, H., Verberk, W. C. E. P., Kimenai, F. F. P., van der Velde, G., & Leuven, R. S. E. W. (2015). Natural recovery and restoration of acidified shallow soft-water lakes: successes and bottlenecks revealed by assessing life-history strategies of chironomid larvae. Basic and Applied Ecology, 16(4), 325–334.CrossRefGoogle Scholar
  76. Verberk, W. C. E. P., Siepel, H., & Esselink, H. (2008a). Life-history strategies in freshwater macroinvertebrates. Freshwater Biology, 53(9), 1722–1738.CrossRefGoogle Scholar
  77. Verberk, W. C. E. P., Leuven, R. S. E. W., Van Duinen, G. J. A., & Esselink, H. (2010). Loss of aquatic invertebrate diversity and environmental heterogeneity following large scale rewetting measures. Basic and Applied Ecology, 11(5), 440–449.CrossRefGoogle Scholar
  78. Verberk, W. C. E. P., Van Noordwijk, C. G. E., & Hildrew, A. G. (2013). Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science, 32(2), 531–547.CrossRefGoogle Scholar
  79. Vieira, N. K. M., Clements, W. H., Guevara, L. S., & Jacobs, B. F. (2004). Resistance and resilience of stream insect communities to repeated hydrologic disturbances after a wildfire. Freshwater Biology, 49(10), 1243–1259.CrossRefGoogle Scholar
  80. Wiederholm, T. (1981). Associations of lake-living Chironomidae. A cluster analysis of Brundin's and recent data from Swedish lakes. Schweizerische Zeitschrift für Hydrologie, 43(1), 140–149.Google Scholar
  81. Yuan, L. L. (2010). Estimating the effects of excess nutrients on stream invertebrates from observational data. Ecological Applications, 20(1), 110–125.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Sónia R.Q. Serra
    • 1
  • Manuel A.S. Graça
    • 1
  • Sylvain Dolédec
    • 2
  • Maria João Feio
    • 1
  1. 1.MARE – Marine and Environmental Sciences Centre, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  2. 2.Biodiversité et Plasticité dans les HydrosystèmesUniversité Lyon 1, UMR 5023 LEHNAVilleurbanne CedexFrance

Personalised recommendations