Risk-based framework for optimizing residual chlorine in large water distribution systems

  • Muhammad Nadeem Sharif
  • Ashraf Farahat
  • Husnain Haider
  • Muhammad A. Al-Zahrani
  • Manuel J. Rodriguez
  • Rehan Sadiq


Managing residual chlorine in large water distribution systems (WDS) to minimize human health risk is a daunting task. In this research, a novel risk-based framework is developed and implemented in a distribution network spanning over 64 km2 for supplying water to the city of Al-Khobar (Saudi Arabia) through 473-km-long water mains. The framework integrates the planning of linear assets (i.e., pipes) and placement of booster stations to optimize residual chlorine in the WDS. Failure mode and effect analysis are integrated with the fuzzy set theory to perform risk analysis. A vulnerability regarding the probability of failure of pipes is estimated from historical records of water main breaks. The consequence regarding residual chlorine availability has been associated with the exposed population depending on the land use characteristics (i.e., defined through zoning). EPANET simulations have been conducted to predict residual chlorine at each node of the network. A water quality index is used to assess the effectiveness of chlorine practice. Scenario analysis is also performed to evaluate the impact of changing locations and number of booster stations, and rehabilitation and/or replacement of vulnerable water mains. The results revealed that the proposed methodology could facilitate the utility managers to optimize residual chlorine effectively in large WDS.


Water distribution system (WDS) EPANET Water quality index (WQI) Fuzzy-FMEA Risk priority number (RPN) 



This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH)-King Abdulaziz City for Science and Technology through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM), the Kingdom of Saudi Arabia, award number (WAT-2390-04).


  1. Abdelgawad, M. (2010). Risk management in the construction industry using combined fuzzy FMEA and fuzzy AHP. Engineering and Management, 136(September), 1028–1037. Retrieved from doi:  10.1061/(ASCE)CO.1943-7862.0000210.
  2. Abu-Monasar, A.A. (2014). PhD Thesis. Department of Civil Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261 Saudi Arabia.Google Scholar
  3. Ahn, J., et al. (2012). Application of EPANET for the determination of chlorine dose and prediction of THMs in a water distribution system. Journal of Sustainable Environment Research, 22(1), 31–38.Google Scholar
  4. Alidadi, M. (2013). The most effective strategy to improve customer satisfaction in Iranian banks: a fuzzy AHP analysis. Journal of Business Studies Quarterly, 4(4), 83–93 ISSN 2152-1034.Google Scholar
  5. Al-Jasser, A. O. (2007). Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect. Water Research, 41(2), 387–396. doi: 10.1016/j.watres.2006.08.032.CrossRefGoogle Scholar
  6. Alqahtani, J. M. (2015). Drinking water quality and public health in southwestern Saudi Arabia: the need for a national monitoring program. Journal of Family & Community Medicine, 22(1), 19–24. doi: 10.4103/2230-8229.149581.CrossRefGoogle Scholar
  7. Al-Zahrani, M. A. (2013). Modeling and simulation of water distribution system: a case study. Arabian Journal for Science and Engineering, 39(3), 1621–1636. doi: 10.1007/s13369-013-0782-z.CrossRefGoogle Scholar
  8. Behzadian, K. (2012). A novel approach for water quality management in water distribution systems by multi-objective booster chlorination. International Journal of Civil Engineering, 10(1), 11.Google Scholar
  9. Bereskie, T., Haider, H., Rodriguez, M. J., & Sadiq, R. (2016). Framework for continuous performance improvement in small drinking water systems. Science of the Total Environment, 574, 1405–1414. doi: 10.1016/j.scitotenv.2016.08.067.CrossRefGoogle Scholar
  10. Boccelli, D., et al. (1998). Optimal scheduling of booster disinfection in water distribution systems. Journal of Water Resources Planning and Management, 124(1983), 99–111.CrossRefGoogle Scholar
  11. Broad, D. R. (2005). Water distribution system optimization using metamodels. Journal of Water Resources Planning and Management, 131(3), 172–180. doi: 10.1061/(ASCE)0733-9496(2005)131:3(172).CrossRefGoogle Scholar
  12. Carbone, T., & Tippett, D. (2004). Project risk management using the project risk FMEA. Journal of Engineering Management, 16(4), 1–8. doi: 10.1080/10429247.2004.11415263.CrossRefGoogle Scholar
  13. Chen, S. H. (1985). Ranking fuzzy numbers with maximizing set and minimizing set. Elsevier Science B.V., 17(2), 113–129. doi: 10.1016/0165-0114(85)90050-8.Google Scholar
  14. Cozzolino, L. (2005). Control of DBPs in water distribution systems through optimal chlorine dosage and disinfection station allocation. Desalination, 176(1–3 SPEC. ISS), 113–125. doi: 10.1016/j.desal.2004.10.021.CrossRefGoogle Scholar
  15. Deineinger, R. (1992). Optimal locations of monitoring stations in water distribution system. Journal of Environmental Engineering, 118(1), 4–16 NaN, NaN-9372–4.CrossRefGoogle Scholar
  16. Francisque, A., Rodriguez, M. J., Sadiq, R., Miranda, L. F., & Proulx, F. (2009). Prioritizing monitoring locations in a water distribution network: a fuzzy risk approach. Journal of Water Supply: Research and Technology - AQUA, 58(7), 488–509. doi: 10.2166/aqua.2009.011.CrossRefGoogle Scholar
  17. Gibbs, M. S., Dandy, G. C., & Maier, H. R. (2010). Calibration and optimization of the pumping and disinfection of a real water supply system. Journal of Water Resources Planning and Management-Asce, 136(4), 493–501. doi: 10.1061/(Asce)Wr.1943-5452.0000060.CrossRefGoogle Scholar
  18. Haider, H. (2015). Framework for optimizing chlorine dose in small- to medium-sized water distribution systems: a case of a residential neighbourhood in Lahore. Pakistan, 41(5), 614–623.Google Scholar
  19. Haider. (2016). Risk-based framework for improving customer satisfaction through system reliability in small-sized to medium-sized water utilities. Journal of Management in Engineering, 28(April), 203–211. doi: 10.1061/(ASCE)ME.1943-5479.0000435.Google Scholar
  20. Haider, H., Sadiq, R., Tesfamariam, S., et al. (2014). Performance indicators for small- and medium-sized water supply systems: a review. Environmental Reviews, 22(1), 1–40. doi: 10.1139/er-2013-0013.CrossRefGoogle Scholar
  21. Haider, H., Haydar, S., Sajid, M., Tesfamariam, S., & Sadiq, R. (2015). Framework for optimizing chlorine dose in small- to medium-sized water distribution systems: a case of a residential neighbourhood in Lahore, Pakistan. Water SA, 41(5), 614–623. doi: 10.4314/wsa.v41i5.04.CrossRefGoogle Scholar
  22. Housh, M., & Ohar, Z. (2016). Integrating physically based simulators with event detection systems: multi-site detection approach. Water Research, 110, 180–191. doi: 10.1016/j.watres.2016.12.003.CrossRefGoogle Scholar
  23. Imran, S. A., Sadiq, R., & Kleiner, Y. (2009). Effect of regulations and treatment technologies on water distribution infrastructure. Journal of American Water Works Association (AWWA), 101(3), 82–95.Google Scholar
  24. Islam, N., Sadiq, R., Rodriguez, M., et al. (2013). Optimizing booster chlorination in water distribution networks: a water quality index approach. Environmental Monitoring and Assessment, 185(10), 8035–8050. doi: 10.1007/s10661-013-3153-z.CrossRefGoogle Scholar
  25. Islam, N., Farahat, A., Zahrani, M., et al. (2015). Contaminant intrusion in water distribution networks: a review and integrated model proposition for decision making. Environmental Review, 23(3), 337–352.CrossRefGoogle Scholar
  26. Jeppson, R. W. (1976). Analysis of flow in pipe networks. Ann Arbor: Ann Arbor Science.Google Scholar
  27. Khan, F., Husain, T., & Lumb, A. (2003). Water quality evaluation and trend analysis in selected watersheds of the Atlantic region of Canada. Journal of Monitoring and Assessment, Kluwer Academic Publisher Netherland 2003, 88(1), 221–248.Google Scholar
  28. Lansey, K., Pasha, F., Pool, S., Elshorbagy, W., & Uber, J. (2007). Locating satellite booster disinfectant stations. Journal of Water Resources Planning and Management, 133(4), 372–376. doi: 10.1061/(ASCE)0733-9496(2007)133:4(372).CrossRefGoogle Scholar
  29. Mamlook, R., & Al-Jayyousi, O. (2003). Fuzzy sets analysis for leak detection in infrastructure systems: a proposed methodology. Clean Technologies and Environmental Policy, 6(1), 26–31. doi: 10.1007/s10098-003-0209-8.CrossRefGoogle Scholar
  30. May, R. J. (2008). Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environmental Modelling and Software, 23(10–11), 1289–1299. doi: 10.1016/j.envsoft.2008.03.008.CrossRefGoogle Scholar
  31. McGhee, T.J. (1991). Water supply and sewerage. In McGraw-Hill (Ed.), 5th ed.. New York: McGraw-Hill. Retrieved from http://www.worldcat.org/title/water-supply-and-sewerage/oclc/21440985
  32. Munavalli. (2003). Optimal scheduling of multiple chlorine sources in water distribution systems. Journal of Water Resources Planning and Management, 129(December), 493–505. doi: 10.1061/(ASCE)0733-9496(2003)129:6(493).CrossRefGoogle Scholar
  33. Ohar, Z. (2014). Optimal design and operation of booster chlorination stations layout in water distribution systems. Journal of Water Research, 58, 209–220. doi: 10.1016/j.watres.2014.03.070.CrossRefGoogle Scholar
  34. Ostfeld, A., & Salomons, E. (2006). Conjunctive optimal scheduling of pumping and booster chlorine injections in water distribution systems. Journal of Engineering Optimization, 38(3), 337–352. doi: 10.1080/03052150500478007.CrossRefGoogle Scholar
  35. Parks, S. L. I., & Van Briesen, J. M. (2009). Booster disinfection for response to contamination in a drinking water distribution system. Journal of Water Resources Planning and Management-Asce, 135(6), 502–511. doi: 10.1061/(ASCE)0733-9496(2009)135:6(502).CrossRefGoogle Scholar
  36. Prasad, T. D., Walters, G. A., & Savic, D. A. (2004). Booster disinfection of water supply networks: multiobjective approach. Journal of Water Resources Planning and Management, 130(October), 367. doi: 10.1061/(ASCE)0733-9496(2004)130:5(367).CrossRefGoogle Scholar
  37. Price, E., & Ostfeld, A. (2016). Optimal pump scheduling in water distribution systems using graph theory under hydraulic and chlorine constraints. Journal of Water Resources Planning and Management, 142(10), 4016037. doi: 10.1061/(ASCE)WR.1943-5452.0000680.CrossRefGoogle Scholar
  38. Rossman, L. (2006). The effect of advanced treatment on chlorine decay in metallic pipes. Water Research, 40(13), 2493–2502. doi: 10.1016/j.watres.2006.04.046.CrossRefGoogle Scholar
  39. Sadiq, R. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Science of the Total Environment, 321(1–3), 21–46. doi: 10.1016/j.scitotenv.2003.05.001.CrossRefGoogle Scholar
  40. Sadiq, R. (2007). Water quality failures in distribution networks—risk analysis using fuzzy logic and evidential reasoning. Risk Analysis, 27(5), 1381–1394. doi: 10.1111/j.1539-6924.2007.00972.x.CrossRefGoogle Scholar
  41. Sadiq, R., & Rodriguez, M. J. (2004). Fuzzy synthetic evaluation of disinfection by-products—a risk-based indexing system. Journal of Environmental Management, 73(1), 1–13. doi: 10.1016/j.jenvman.2004.04.014.CrossRefGoogle Scholar
  42. Sharif, M. N., Farahat, A., Al-Zahrani, M. A., Islam, N., Rodriguez, M. J., & Sadiq, R. (2016). Optimization of chlorination boosters in drinking water distribution network for al-Khobar City in Saudi Arabia. Arabian Journal of Geosciences, 9(9), 15. doi: 10.1007/s12517-016-2552-1.CrossRefGoogle Scholar
  43. Shokoohi, M., Tabesh, M., Nazif, S., & Dini, M. (2016). Water quality based multi-objective optimal design of water distribution systems. Water Resources Management, 1–16. doi: 10.1007/s11269-016-1512-6.
  44. Siew, C., Tanyimboh, T. T., & Seyoum, A. G. (2016). Penalty-free multi-objective evolutionary approach to optimization of Anytown water distribution network. Water Resources Management, 30(11), 3671–3688. doi: 10.1007/s11269-016-1371-1.CrossRefGoogle Scholar
  45. Sunger, N., & Hass, C. N. (2015). Quantitative microbial risk assessment for recreational exposure to water bodies in Philadelphia. Water Environment Research, 87(3), 211–222. doi: 10.2175/106143015X14212658613073.CrossRefGoogle Scholar
  46. Tabesh, M. (2010). Quality management of water distribution networks by optimizing dosage and location of chlorine injection. International Journal of Environmental Research, 5(2), 321–332 NaN-6865.Google Scholar
  47. Tryby, M., Boccelli, D., Uber, J., & Rossman, L. (2002). Facility location model for booster disinfection of water supply networks. Journal of Water Resources Planning and Management, 128(5), 322–333. doi: 10.1061/(ASCE)0733-9496(2002)128:5(322).CrossRefGoogle Scholar
  48. USEPA. (2004). 1200 Pennsylvania Ave. NW Washington DC: Environmental Protection Agency Retrieved from https://www.epa.gov/aboutepa.Google Scholar
  49. WHO. (2004). Guidelines for drinking-water quality (3rd ed.). Geneva: World Health Orgnization. doi: 10.1016/S1462-0758(00)00006-6.Google Scholar
  50. Xu, C., & Goulter, I. (1999). Reliability-based optimal design of water distribution networks. Journal of Water Resources Planning and Management,ASCE, 125(December 1999), 352–362 ISSN 0733-9496/99/0006-0352– 0362.CrossRefGoogle Scholar
  51. Zadeh, L. (1978). Fuzzy sets as a basis for a theory of possibility. doi: 10.1016/0165-0114(78)90029-5.

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.College of Applied and Supporting StudiesKing Fahd University of Petroleum & MineralsDhahranSaudi Arabia
  2. 2.School of EngineeringUniversity of British ColumbiaKelownaCanada
  3. 3.Department of Physics, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  4. 4.Civil Engineering Department, College of EngineeringQassim UniversityQassimSaudi Arabia
  5. 5.Department of Civil and Environmental Engineering, Water Research GroupKing Fahd University of Petroleum & MineralsDhahranSaudi Arabia
  6. 6.École supérieure d’aménagement du territoire et développement régionalUniversité LavalQuébecCanada

Personalised recommendations