Chemical characterization of surface snow in Istanbul (NW Turkey) and their association with atmospheric circulations

  • Asli BaysalEmail author
  • Hakki Baltaci
  • Nil Ozbek
  • Orhan Destanoglu
  • Gul Sirin Ustabasi
  • Gulcin Gumus


The understanding of the impurities in natural snow is important in realizing its atmospheric quality, soil characteristics, and the pollution caused to the environment. Knowledge of the occurrence of major ions and trace metals in the snow in the megacity of Istanbul is very limited. This manuscript attempts to understand the origin of major soluble ions (fluoride, acetate, formate, chlorite, chloride, nitrite, chlorate, bromide, nitrate, sulfate, phosphate, and perchlorate) and some trace metals (Fe, Mn, Cd, Co, Ni, Pb, Zn, Cu) in winter surface snow, collected in Istanbul, Turkey. The sampling of the surface snow was conducted after each precipitation during the winter of 2015–2016 at three sites in the city. Besides the statistical evaluation of the major ions, and some trace metal concentrations, the chemical variations along with atmospheric circulations, which are important modification mechanisms that influence the concentrations, were investigated in the study. At examined locations and times, 12 major anions were investigated and in these anions fluoride, chlorite, chlorate, bromide, and perchlorate in the snow samples were below the detection limit; only SO4 2−, NO3 , and CI were found to be in the range of 1.11–17.90, 0.75–4.52, and 0.19–3.01 mg/L. Also, according to the trace element determination, the concentration was found to be 29.2–53.7, 2.0–16.1, 1.0–2.2, 50.1–71.1, 24.2–35.2, ND–7.9, 43.2–106.6, and 3.0–17.7 μg/L for Fe, Mn, Cd, Co, Ni, Pb, Zn, and Cu, respectively. The major anions and investigated trace elements here originated mainly from anthropogenic and atmospheric circulation and mainly influenced by northerly and southerly circulation patterns. While the main limitations in the present study may be the low number of samples that may not be entirely representative, accurately reflect identification, or support other previously observed local measurements, we believe that the type of data presented in this study has the potential to be used in the field of environmental risk assessment and, as result, for human health.


Istanbul Snow Major ions Trace elements Meteorological conditions Atmospheric circulations 



The author would like to express their thanks to Prof. Dr. Hasan Saygin (Istanbul Aydin University) for the contribution on the source and sink relation.

Supplementary material

10661_2017_5982_MOESM1_ESM.docx (14 kb)
Supplementary Table 1 (DOCX 13 kb)
10661_2017_5982_MOESM2_ESM.docx (13 kb)
Supplementary Table 2 (DOCX 13 kb)


  1. Abbott, M., Einerson, J., Schuster, P., Susong, D., & Taylor, H. E. (2004). Trace elements and common ions in southeastern Idaho snow: regional air pollutant tracers for source area emissions. Fuel Processing Technology, 85, 657–671.CrossRefGoogle Scholar
  2. Alfaro, S. C., Lafon, S., Rajot, J. L., Formenti, P., Gaudichet, A., & Maille, M. (2004). Iron oxides and light absorption by pure desert dust: an experimental study. Journal of Geophysical Research Atmospheres, 109(D8), D08208.CrossRefGoogle Scholar
  3. Anadolu Agency (AA). (2016). Istanbul schools to stay closed Monday, flights cancelled. Resource document Anadolu Agency. Accessed 10 April 2017.
  4. Anil, I., Golcuk K., Karaca, F (2014) ATR-FTIR Spectroscopic study of functional groups in aerosols: the contribution of a Saharan dust transport to urban atmosphere in Istanbul, Turkey. Water, Air, and Soil Pollution. 225, 1898.Google Scholar
  5. Bacardit, M., & Camarero, L. (2010). Atmospherically deposited major and trace elements in the winter snowpack along a gradient of altitude in the Central Pyrenees: the seasonal record of long-range fluxes over SW Europe. Atmospheric Environment, 44, 582–595.CrossRefGoogle Scholar
  6. Balletine, R. J. (1982). Numerical simulation of land-breeze-induced snowbands along the western shore of Lake Michigan. Monthly Weather Review, 110, 1544–1553.CrossRefGoogle Scholar
  7. Baltacı, H., Göktürk, O. M., Kındap, T., Ünal, A., & Karaca, M. (2015). Atmospheric circulation types in Marmara Region (NW Turkey) and their influence on precipitation. International Journal of Climatology, 35, 1810–1820.CrossRefGoogle Scholar
  8. Baltacı, H., Kındap, T., Ünal, A., Karaca, M. (2017). The influence of atmospheric circulation types on regional patterns of precipitation in Marmara (NW Turkey). Theoretical and Applied Climatology. 127, 563–572.Google Scholar
  9. Beyn, F., Matthias, V., & Dahnke, K. (2014). Changes in atmospheric nitrate deposition in Germany—an isotopic perspective. Environmental Pollution, 194, 1–10.CrossRefGoogle Scholar
  10. Braham Jr., R. R. (1983). The Midwest snow storm of 8–11 December 1977. Monthly Weather Review, 111, 253–272.CrossRefGoogle Scholar
  11. Caglayan, C., Hogg J., Aslan, M. (editing by Tattersall N., Williams A.) (2015). Hundreds of flights canceled as Istanbul hit by heavy snow. Resource document Reuters. Accessed 10 April 2017.
  12. Caritat, P. d., Hall, G., Gislason, S., Belsey, W., Braun, M., Goloubeva, N. I., Olseng, H. K., Scheieh, J. O., & Vaive, J. E. (2005). Chemical composition of arctic snow: concentration levels and regional distribution of major elements. Science of the Total Environment, 336, 183–199.CrossRefGoogle Scholar
  13. Carling, G. T., Fernandez, D. P., & Johnson, W. P. (2012). Dust-mediated loading of trace and major elements to Wasatch Mountain snowpack. Science of the Total Environment, 43, 65–77.CrossRefGoogle Scholar
  14. Carpenter, D. M. (1993). The lake effect of the Great Salt Lake: overview and forecast problems. Weather and Forecasting, 8, 181–193.CrossRefGoogle Scholar
  15. Cereceda-Balic, F., Palomo-Marín, M. R., Bernalte, E., Vidal, V., Christie, J., Fadic, X., Guevara, J. L., Miro, C., & Pinilla Gil, E. (2012). Impact of Santiago de Chile urban atmospheric pollution on anthropogenic trace elements enrichment in snow precipitation at Cerro Colorado, Central Andes. Atmospheric Environment, 47, 51e57.CrossRefGoogle Scholar
  16. Clow, D. W., Ingersoll, G. P., Alisa, M. M., Turk, J. T., & Campbell, D. H. (2002). Comparison of snowpack and winter wet-deposition chemistry in the Rocky Mountains, USA: implications for winter dry deposition. Atmospheric Environment, 36, 2337–2348.CrossRefGoogle Scholar
  17. Dibb, J. E., Whitlow, S. I., & Arsenault, M. (2007). Seasonal variations in the soluble ion content of snow at Summit. Greenland: constraints from three years of daily surface snow samples. Atmospheric Environment, 41, 5007–5019.CrossRefGoogle Scholar
  18. Douglas, T. A., & Sturm, M. (2004). Arctic haze, mercury and the chemical composition of snow across northwestern Alaska. Atmospheric Environment, 3, 805–820.CrossRefGoogle Scholar
  19. Filippa, G., Freppaz, M., Williams, M. W., & Zanini, E. (2010). Major element chemistry in inner alpine snowpacks (Aosta Valley Region, NW Italy). Cold Regions Science and Technology, 64, 158–166.CrossRefGoogle Scholar
  20. Gabrielli, P., Cozzi, G., Torcini, S., Cescon, P., & Barbante, C. (2008). Trace elements in winter snow of the Dolomites (Italy): a statistical study of natural and anthropogenic contributions. Chemosphere, 72, 1504–1509.CrossRefGoogle Scholar
  21. Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Domine, F., Frey, M. M., Guzman, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klan, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., & Zhu, T. (2007). An overview of snow photochemistry: evidence, mechanisms and impacts. Atmospheric Chemistry and Physics, 7, 4329–4373.CrossRefGoogle Scholar
  22. Gregurek, D., Reimann, C., & Stump, E. F. (1998). Trace elements and precious metals in snow samples from the immediate vicinity of nickel processing plants, Kola Peninsula, northwest Russia. Environmental Pollution, 102, 221–232.CrossRefGoogle Scholar
  23. Gregurek, D., Melcher, F., Niskavaara, H., Pavlov, V. A., Reimann, C., & Stump, E. F. (1999). Platinum-group elements (Rh, Pt, Pd) and Au distribution in snow samples from the Kola Peninsula, NW Russia. Atmospheric Environment, 33, 3281–3290.CrossRefGoogle Scholar
  24. Grigholm, B., Mayewski, P. A., Kurbatov, A. V., Casassa, G., Staeding, A. C., Handley, M., Sneed, S. B., & Introne, D. S. (2009). Chemical composition of fresh snow from Glaciar Marinelli, Tierra del Fuego, Chile. Journal of Glaciology, 55, 769–776.CrossRefGoogle Scholar
  25. Hjelmfelt, M. R. (1990). Numerical study of the influence of environmental conditions on lake-effect snowstorms on Lake Michigan. Monthly Weather Review, 118, 138–150.CrossRefGoogle Scholar
  26. Hjelmfelt, M. R., & Braham Jr., R. R. (1983). Numerical simulation of the airflow over Lake Michigan for a major lake-effect snow event. Monthly Weather Review, 111, 205–219.CrossRefGoogle Scholar
  27. Holyroyd III, E. W. (1971). Lake effect cloud bands as seen from weather satellites. Journal of the Atmospheric Sciences, 28, 1165–1170.CrossRefGoogle Scholar
  28. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Wollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., & Joseph, D. (1996). The NCEP/NCAR 40 year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–471.CrossRefGoogle Scholar
  29. Kanakidou, M., Mihalopoulos, N., Kindap, T., Im, U., Vrekoussis, M., Gerasopoulos, E., Dermitzaki, E., Unal, A., Koçak, M., Markakis, K., Melas, D., Kouvarakis, G., Youssef, A. F., Richter, A., Hatzianastassiou, N., Hilboll, A., Ebojie, F., Wittrock, F., von Savigny, C., Burrows, J. P., Ladstaetter-Weissenmayer, A., & Moubasherg, H. (2011). Megacities as hot spots of air pollution in the East Mediterranean. Atmospheric Environment., 45, 1223–45, 1235.Google Scholar
  30. Kang, S., Zhang, Q., Kaspari, S., Qin, D., Cong, Z., Ren, J., & Mayewski, P. A. (2007). Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn. Atmospheric Environment, 41, 7208–7218.CrossRefGoogle Scholar
  31. Kındap, T. (2010). A severe sea-effect snow episode over the city of Istanbul. Natural Hazards, 54, 707–723.CrossRefGoogle Scholar
  32. Lafon, S., Rajot, J. L., Alfaro, S. C., & Gaudichet, A. (2004). Quantification of iron oxides in desert aerosol. Atmospheric Environment, 38, 1211–1218.CrossRefGoogle Scholar
  33. Lee, K., Hur, S. D., Hou, S., Hong, S., Qin, X., Ren, J., Liu, Y., Rosman, K. J. R., Barbanted, C., & Boutron, C. F. (2008). Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Science of the Total Environment, 404, 171–181.CrossRefGoogle Scholar
  34. Legrand, M. R., & Delmas, R. J. (1988). Formation of HCI in the Antarctic atmosphere. Journal of Geophysical Research, 93, 7153–7168.CrossRefGoogle Scholar
  35. Makowski Giannoni, S., Rollenbeck, R., Trachte, K., & Bendix, J. (2014). Natural or anthropogenic? On the origin of atmospheric sulfate deposition in the Andes of southeastern Ecuador. Atmospheric Chemistry and Physics., 14, 11297–11312.CrossRefGoogle Scholar
  36. Mayewski, P. A., Lyons, W. B., & Ahmad, N. (1983). Chemical composition of a high altitude fresh snowfall in the Ladakh Himalayas. Geophysical Research Letters, 10, 105–108.CrossRefGoogle Scholar
  37. McConnell, J. R., & Edwards, R. (2008). Coal burning leaves toxic heavy metal legacy in the Arctic. Proceeding of the Natural Academic Sciences, 105, 12140–12144.CrossRefGoogle Scholar
  38. Mihailović, A., Vasić, M. V., Ninkov, J., Erić, S., Ralević, N. M., Nemeš, T., & Antić, A. (2014). Multivariate analysis of the contents of metals in urban snow near traffic lanes in Novi Sad, Serbia. Journal of Serbian Chemical Society, 79(2), 265–276.CrossRefGoogle Scholar
  39. Nickus, U., Kuhn, M., Novoà, A., & Rossi, G. C. (1998). Major element chemistry in Alpine snow along a north-south transect in the Eastern Alps. Atmospheric Environment, 32, 4053–4060.CrossRefGoogle Scholar
  40. Niziol, T. A. (1987). Operational forecasting of lake-effect snowfall in western and central New York. Weather and Forecasting, 2, 310–321.CrossRefGoogle Scholar
  41. OECD (2008). Territorial reviews: Istanbul, Turkey (OECD, Paris.Google Scholar
  42. Ozbek, O., & Baysal, A. (2016). A new approach for the determination of sulphur in airborne particles by HR-CS ETAAS. International Journal of Environmental Analytical Chemistry, 96, 505–514.CrossRefGoogle Scholar
  43. Ozdemir, H., Pozzoli, L., Kindap, T., Demir, G., Mertoglu, B., Mihalopoulos, N., Theodosi, C., Kanakidou, M., Im, U., & Unal, A. (2014). Spatial and temporal analysis of black carbon aerosols in Istanbul megacity. Science of Total Environment., 473, 451–454.CrossRefGoogle Scholar
  44. Road Motor Vehicle Statistics (2013), Turkish Statistical Institute (printing division, Ankara, 2014.Google Scholar
  45. Rothrock, H. J. (1969). An aid in forecasting significant lake snows. ESSA Technical Memorandum. WBTM, CR-30, 11.Google Scholar
  46. Shaw, G. E. (1988). Antarctic aerosols: a review. Reviews of Geophysics, 26, 89–112.CrossRefGoogle Scholar
  47. Siudek, P., Frankowski, M., & Siepak, J. (2015). Trace element distribution in the snow cover from an urban area in central Poland. Environmental Monitoring and Assessment, 187(5), 225–240.CrossRefGoogle Scholar
  48. Steenburgh, W. J., & Onton, D. J. (2000). Multiscale analysis of the 7 December 1998 great salt lake-effect snowstorm. Monthly Weather Review, 129, 1296–1313.CrossRefGoogle Scholar
  49. Szigeti, T., Mihucz, V. G., Óvári, M., Baysal, A., Atılgan, S., Akman, S., & Záray, G. (2013). Chemical characterization of PM2. 5 fractions of urban aerosol collected in Budapest and Istanbul. Microchemical Journal, 107, 86–94.CrossRefGoogle Scholar
  50. Takeda, K., Marumoto, K., Minamikawa, T., Sakugawa, H., & Fujiwara, K. (2000). Three-year determination of trace metals and the lead isotope ratio in rain and snow depositions collected in Higashi-Hiroshima, Japan. Atmospheric Environment, 34, 4525–4535.CrossRefGoogle Scholar
  51. Toom-Sauntry, D., & Barrie, L. (2002). Chemical composition of snowfall in the high Arctic: 1990–1994. Atmospheric Environment, 36, 2683–2693.CrossRefGoogle Scholar
  52. USEPA List of Hazardous Air Pollutants (USEPA). (1990). The Clean Air Act Amendments of 1990 List of Hazardous Air Pollutants, Accessed Accessed 10 April 2017.
  53. Vasić, M. V., Mihailović, A., Kozmidis-Luburić, U., Nemes, T., Ninkov, J., Zeremski-Škorić, T., & Antić, B. (2012). Metal contamination of short-term snow cover near urban crossroads: correlation analysis of metal content and fine particles distribution. Chemosphere, 86(6), 585–592.CrossRefGoogle Scholar
  54. Veysseyre, A., Moutard, K., Ferrari, C., Van de Velde, K., Barbante, C., Cozzi, G., Capodaglio, G., & Boutron, C. (2001). Heavy metals in fresh snow collected at different altitudes in the Chamonix and Maurienne valleys, French Alps: initial results. Atmospheric Environment, 35, 415–425.CrossRefGoogle Scholar
  55. Wania, F., Hoff, J. T., Jia, C. Q., & Mackay, D. (1998). The effects of snow and ice on the environmental behaviour of hydrophobic organic chemicals. Environmental Pollution, 102, 25–41.CrossRefGoogle Scholar
  56. Zhang, C., Wu, G., Gao, S., Zhao, Z., Zhang, X., Tian, L., Mu, Y., & Joswiak, D. (2013). Distribution of major elements between the dissolved and insoluble fractions in surface snow at Urumqi Glacier No. 1, Eastern Tien Shan. Atmospheric Research, 132–133, 299–308.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Asli Baysal
    • 1
    Email author
  • Hakki Baltaci
    • 2
  • Nil Ozbek
    • 3
  • Orhan Destanoglu
    • 4
  • Gul Sirin Ustabasi
    • 1
  • Gulcin Gumus
    • 3
  1. 1.Health Services Vocational School of Higher EducationT.C. Istanbul Aydin UniversityIstanbulTurkey
  2. 2.Turkish State Meteorological ServiceAnkaraTurkey
  3. 3.Faculty of Science and Letters, Department of ChemistryIstanbul Technical UniversityIstanbulTurkey
  4. 4.Department of ChemistryThe Council of Forensic MedicineBahcelievler IstanbulTurkey

Personalised recommendations