H emibagrus sp. as a potential bioindicator of hazardous metal pollution in Selangor River

  • Nor Shahirul Umirah Idris
  • Kah Hin LowEmail author
  • Isa Baba Koki
  • Ahmad Firdaus Kamaruddin
  • Kaharudin Md. Salleh
  • Sharifuddin Md. Zain


The spatial distributions of Na, Mg, K, Ca, Cr, Fe, Ni, Cu, Zn, As, Se and Pb in Hemibagrus sp. from Selangor River and a reference site were determined with inductively coupled plasma-mass spectrometer, in comparison to the levels in their surrounding water body and sediments. The results demonstrated significant differences in elemental accumulation pattern in different fish tissues originated from both sites. The variations observed were mainly subjected to their metabolic activities, and also the influence of the surrounding medium. In general, the liver tends to accumulate higher concentration of metals followed by the gills, and muscle tissues. The data also indicate associations between the concentrations of metal contaminants measured in the fish and the levels observed at the sites. The concentrations of hazardous metals As, Se and Pb in all the studied tissues reflect the influence of anthropogenic inputs. This suggests the potential utility of widely available Hemibagrus sp. as a valuable bioindicator of metal pollution in environmental monitoring and assessment.


Biomonitor Chemometric Contamination Element Fish 



The authors gratefully acknowledge the financial assistance for this work from the Ministry of Science, Technology and Innovation, Malaysia (ER010-2011A) and the University of Malaya (RP017-14AFR).


  1. Abdel-Khalek, A. A., Elhaddad, E., Mamdouh, S., & Marie, M. A. S. (2016). Assessment of metal pollution around sabal drainage in River Nile and its impacts on bioaccumulation level, metals correlation and human risk hazard using Oreochromis niloticus as a bioindicator. Turkish Journal of Fisheries and Aquatic Sicences, 16(2), 227–239.Google Scholar
  2. Adebiyi, F. A., Siraj, S. S., Harmin, S. A., & Christianus, A. (2013). Induced spawning of a river catfish Hemibagrus nemurus (Valenciennes, 1840). Pertanika Journal of Tropical Agricultural Science, 31(1), 71–78.Google Scholar
  3. Adhikari, S., Ghosh, L., Rai, S. P., & Ayyappan, S. (2009). Metal concentrations in water, sediment, and fish from sewage-fed aquaculture ponds of Kolkata, India. Environmental Monitoring and Assessment, 159(1–4), 217–230. doi: 10.1007/s10661-008-0624-8.CrossRefGoogle Scholar
  4. Agarwal, R., Kumar, R., & Behari, J. R. (2007). Mercury and lead content in fish species from the river Gomti, Lucknow, India, as biomarkers of contamination. Bulletin of Environmental Contamination and Toxicology, 78(2), 108–112. doi: 10.1007/s00128-007-9035-8.CrossRefGoogle Scholar
  5. Ahmad, A. K., & Sarah, A. (2015). Human health risk assessment of heavy metals in fish species collected from catchments of former tin mining. International Journal of Research Studies in Science, Engineering and Technology, 2(4), 9–21.Google Scholar
  6. Ahmed, M., Ahmad, T., Liaquat, M., Abbasi, K. S., Farid, I. B. A., & Jahangir, M. (2016). Tissue specific metal characterization of selected fish species in Pakistan. Environmental Monitoring and Assessment, 188(4), 1–9.CrossRefGoogle Scholar
  7. Alloway, B. J. (2013). Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Environmental Pollution, 22.Google Scholar
  8. Ayni, F. E., Cherif, S., Jrad, A., & Trabelsi-Ayadi, M. (2011). Impact of treated wastewater reuse on agriculture and aquifer recharge in a coastal area: Korba case study. Water Resources Management, 25(9), 2251–2265. doi: 10.1007/s11269-011-9805-2.CrossRefGoogle Scholar
  9. Baras, E., Hafsaridewi, R., Slembrouck, J., Priyadi, A., Moreau, Y., & Pouyaud, L. (2013). Do cannibalistic fish possess an intrinsic higher growth capacity than others? A case study in the Asian redtail catfish Hemibagrus nemurus (Valenciennes, 1840). Aquaculture Research, 45(1), 68–79.CrossRefGoogle Scholar
  10. Batzias, A. F., & Siontorou, C. G. (2008). A new scheme for biomonitoring heavy metal concentrations in semi-natural wetlands. Journal of Hazardous Materials, 158(2–3), 340–358. doi: 10.1016/j.jhazmat.2008.01.092.CrossRefGoogle Scholar
  11. Beamish, F. W. H., Beamish, R. B., & Lim, S. L. H. (2003). Fish assemblages and habitat in a Malaysian blackwater peat swamp. Environmental Biology of Fishes, 68(1), 1–13.CrossRefGoogle Scholar
  12. Bebianno, M., Geret, F., Hoarau, P., Serafim, M., Coelho, M., Gnassia-Barelli, M., et al. (2004). Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomarkers, 9(4–5), 305–330.CrossRefGoogle Scholar
  13. Bell, M. V., Kelly, K. F., & Sargent, J. R. (1981). The uptake from fresh water and subsequent clearance of a vanadium burden by the common eel (Anguilla anguilla). Science of the Total Environment, 19(3), 215–222.CrossRefGoogle Scholar
  14. Birungi, Z., Masola, B., Zaranyika, M. F., Naigaga, I., & Marshall, B. (2007). Active biomonitoring of trace heavy metals using fish (Oreochromis niloticus) as bioindicator species. The case of Nakivubo wetland along Lake Victoria. Physics and Chemistry of the Earth, Parts A/B/C, 32(15), 1350–1358.CrossRefGoogle Scholar
  15. Boyd, C. E. (1995). Chemistry and efficacy of amendments used to treat water and soil quality imbalances in shrimp ponds. In C. L. Browdy & J. S. Hopkins (Eds.), Proceedings of the special session on shrimp farming, Baton Rouge, LA (pp. 183–189). Baton Rouge: The World Aquaculture Society.Google Scholar
  16. Bryan, G. W., & Langston, W. J. (1992). Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution, 76(2), 89–131. doi: 10.1016/0269-7491(92)90099-V.CrossRefGoogle Scholar
  17. Canli, M., & Atli, G. (2003). The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121(1), 129–136. doi: 10.1016/S0269-7491(02)00194-X.CrossRefGoogle Scholar
  18. Cheng, W. H., & Yap, C. K. (2015). Potential human health risks from toxic metals via mangrove snail consumption and their ecological risk assessments in the habitat sediment from Peninsular Malaysia. Chemosphere, 135, 156–165. doi: 10.1016/j.chemosphere.2015.04.013.CrossRefGoogle Scholar
  19. Chirenje, T., Ma, L. Q., Chen, M., & Zillioux, E. J. (2003). Comparison between background concentrations of arsenic in urban and non-urban areas of Florida. Advances in Environmental Research, 8(1), 137–146.CrossRefGoogle Scholar
  20. Daniel, R., & Kawasaki, N. (2016). The distribution of heavy metals and nutrients along Selangor River and its adjacent mining ponds, Malaysia. International Journal of Advances in Agricultural & Environmental Engineering, 3(2).Google Scholar
  21. Davies, J., & Rahim, A. A. (1989). Freshwater fish survey of the North Selangor peat swamp forest. WWF Malaysia.Google Scholar
  22. Dethloff M.G., Christopher J., Schmitt J.C. (2000). Condition factor and organosomatic indices. In: Schmitt C.J., Dethloff M.G (eds) Biomonitoring of Environmental Status and Trends (BEST) Program: selected methods for monitoring chemical contaminants and their effects in aquatic ecosystems. U.S. Geological Survey, Biological Resources Division, Columbia, (MO): Information and Technology Report USGS/BRD-2000-2005.Google Scholar
  23. DID. (2007). Selangor river basin management plan 2007–2012. Kuala Lumpur: Department of Irrigation and Drainage.Google Scholar
  24. Dincer, T., Cakli, S., & Cadun, A. (2010). Comparison of proximate and fatty acid composition of the flesh of wild and cultured fish species. Archiv fur Lebensmittelhygiene, 61(1), 12–17. doi: 10.2376/0003-925X-61-12.Google Scholar
  25. Dural, M., Göksu, M. Z. L., & Özak, A. A. (2007). Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chemistry, 102(1), 415–421. doi: 10.1016/j.foodchem.2006.03.001.CrossRefGoogle Scholar
  26. Ebrahimpour, M., & Mushrifah, I. (2010). Seasonal variation of cadmium, copper, and lead concentrations in fish from a freshwater lake. Biological Trace Element Research, 138(1–3), 190–201.CrossRefGoogle Scholar
  27. Eimers, M. C., Evans, R. D., & Welbourn, P. M. (2001). Cadmium accumulation in the freshwater isopod Asellus racovitzai: the relative importance of solute and particulate sources at trace concentrations. Environmental Pollution, 111(2), 247–253. doi: 10.1016/S0269-7491(00)00066-X.CrossRefGoogle Scholar
  28. El-Sadaawy, M. M., El-Said, G. F., & Sallam, N. A. (2013). Bioavailability of heavy metals in fresh water Tilapia nilotica (Oreachromis niloticus Linnaeus, 1758): potential risk to fishermen and consumers. Journal of Environmental Science and Health, Part B, 48(5), 402–409.CrossRefGoogle Scholar
  29. Faruk, M., Ali, M., & Patwary, Z. (2008). Evaluation of the status of use of chemicals and antibiotics in freshwater aquaculture activities with special emphasis to fish health management. Journal of the Bangladesh Agricultural University, 6(2), 381–390.Google Scholar
  30. Fulazzaky M. A., Seong T. W. & Masirin M. I. M. (2010). Assessment of Water Quality Status for the Selangor River in Malaysia. Water Air Soil Pollution, 205, 63–77.Google Scholar
  31. Grigorakis, K., Alexis, M. N., Anthony Taylor, K. D., & Hole, M. (2002). Comparison of wild and cultured gilthead sea bream (Sparus aurata); composition, appearance and seasonal variations. International Journal of Food Science and Technology, 37(5), 477–484. doi: 10.1046/j.1365-2621.2002.00604.x.CrossRefGoogle Scholar
  32. Hakanson, L. (1980). An ecological risk index for aquatic pollution. A sedimentological approach. Water Research, 14, 970–1001.CrossRefGoogle Scholar
  33. Heath, A. G. (1995). Water pollution and fish physiology. Florida: CRC press.Google Scholar
  34. Jabeen, F., & Chaudhry, A. S. (2010). Environmental impacts of anthropogenic activities on the mineral uptake in Oreochromis mossambicus from Indus River in Pakistan. Environmental Monitoring and Assessment, 166(1–4), 641–651. doi: 10.1007/s10661-009-1029-z.CrossRefGoogle Scholar
  35. Jorgensen, S. E. (ed.) (2011). Handbook of ecological models used in ecosystem and environmental management. USA: CRC Press: Taylor & Francis Group.Google Scholar
  36. Karadede, H., & Ünlü, E. (2000). Concentrations of some heavy metals in water, sediment and fish species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere, 41(9), 1371–1376.CrossRefGoogle Scholar
  37. Klavins, M., Briede, A., Rodinov, V., Kokorite, I., Parele, E., & Klavina, I. (2009). Heavy metals in rivers of Latvia. Science of the Total Environment, 262, 175–184.CrossRefGoogle Scholar
  38. Lacerda, L. D., Santos, J. A., & Madrid, R. M. (2006). Copper emission factors from intensive shrimp aquaculture. Marine Pollution Bulletin, 52(12), 1823–1826. doi: 10.1016/j.marpolbul.2006.09.012.CrossRefGoogle Scholar
  39. Lee, K. Y. (2001). Fish community of the North Selangor peat swamp forest (Doctoral dissertation, MSc Dissertation, University of Malaya, Kuala Lumpur, Malaysia 135 pp).Google Scholar
  40. Leong, K. H., Tan, L. B., & Mustafa, A. M. (2007). Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere, 66(6), 1153–1159.CrossRefGoogle Scholar
  41. Lindsey, B. D., Breen, K. J., Bilger, M. D., & Brightbill, R. A. (1998). Water quality in the lower Susquehanna river basin, Pennsylvania and Maryland, 1992-95 (No. 1168). US Geological Survey; US Geological Survey, Information Services [distributor].Google Scholar
  42. Low, K. H., Zain, S. M., & Abas, M. R. (2011). Evaluation of metal concentrations in red tilapia (Oreochromis spp) from three sampling sites in Jelebu, Malaysia using principal component analysis. Food Analytical Methods, 4(3), 276–285. doi: 10.1007/s12161-010-9166-0.CrossRefGoogle Scholar
  43. Low, K. H., Zain, S. M., & Abas, M. R. (2012). Evaluation of microwave-assisted digestion condition for the determination of metals in fish samples by inductively coupled plasma mass spectrometry using experimental designs. International Journal of Environmental Analytical Chemistry, 92(10), 1161–1175. doi: 10.1080/03067319.2010.548093.CrossRefGoogle Scholar
  44. Low, K. H., Idris, N. S. U., Zain, S. M., Kamaruddin, A. F., Md. Salleh, & K. (2016). Evaluation of elemental distributions in wild-caught and farmed Pangasius sp. Using Pattern Recognition Techniques, International Journal of Food Properties, 19(7), 1489–1503. doi: 10.1080/10942912.2015.1084004.Google Scholar
  45. Mac Donald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology.Google Scholar
  46. Maceda-Veiga, A., Monroy, M., Navarro, E., Viscor, G., & de Sostoa, A. (2013). Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river. Science of the Total Environment, 449, 9–19. doi: 10.1016/j.scitotenv.2013.01.012.CrossRefGoogle Scholar
  47. Malik, R. N., Hashmi, M. Z., & Huma, Y. (2014). Heavy metal accumulation in edible fish species from Rawal Lake Reservoir, Pakistan. Environmental Science and Pollution Research, 21(2), 1188–1196.CrossRefGoogle Scholar
  48. Marchand, C., Fernandez, J. M., Moreton, B., Landi, L., Lallier-Vergès, E., & Baltzer, F. (2012). The partitioning of transitional metals (Fe, Mn, Ni, Cr) in mangrove sediments downstream of a ferralitized ultramafic watershed (New Caledonia). Chemical Geology, 300–301, 70–80. doi: 10.1016/j.chemgeo.2012.01.018.CrossRefGoogle Scholar
  49. Martínez, B., Miranda, J. M., Nebot, C., Rodriguez, J. L., Cepeda, A., & Franco, C. M. (2010). Differentiation of farmed and wild turbot (Psetta maxima): proximate chemical composition, fatty acid profile, trace minerals and antimicrobial resistance of contaminant bacteria. Food Science and Technology International, 16(5), 435–441. doi: 10.1177/1082013210367819.CrossRefGoogle Scholar
  50. McCarthy, J. F., & Shugart, L. R. (1990). Biomarkers of environmental contamination. New York: Lewis Publishers.Google Scholar
  51. Mishra, R. R., Rath, B., & Thatoi, H. (2008). Water quality assessment of aquaculture ponds in Bhitarkanika mangrove ecosystem, Orisso, India. Turkish Journal of Fisheries and Aquatic Science, 8, 71–77.Google Scholar
  52. Mohamad Ali, F., Teng, W. S., & Mohd Idrus, M. M. (2010). Assessment of water quality status for the Selangor River in Malaysia. Water Air Soil Pollution, 205, 63–77. doi: 10.1007/s11270-009-0056-2.CrossRefGoogle Scholar
  53. Naigaga, I., Kaiser, H., Muller, W. J., Ojok, L., Mbabazi, D., Magezi, G., et al. (2011). Fish as bioindicators in aquatic environmental pollution assessment: a case study in Lake Victoria wetlands, Uganda. Physics and Chemistry of the Earth, Parts A/B/C, 36(14–15), 918–928. doi: 10.1016/j.pce.2011.07.066.CrossRefGoogle Scholar
  54. Nannoni, F., Protano, G., & Riccobono, F. (2011). Fractionation and geochemical mobility of heavy elements in soils of a mining area in northern Kosovo. Geoderma, 161(1–2), 63–73. doi: 10.1016/j.geoderma.2010.12.008.CrossRefGoogle Scholar
  55. Ng, P. K., & Ng, H. H. (1995). Hemibagrus gracilis, a new species of large riverine catfish (Teleostei: Bagridae) from Peninsular Malaysia. Raffles Bulletin of Zoology, 43, 133–142.Google Scholar
  56. Ng, P. K., Tay, J. B., & Lim, K. K. (1994). Diversity and conservation of blackwater fishes in Peninsular Malaysia, particularly in the North Selangor peat swamp forest. In Ecology and conservation of Southeast Asian Marine and Freshwater Environments including Wetlands (pp. 203–218). Springer Netherlands.Google Scholar
  57. Nordin, M., & Fariz Mohamed, A. (2002). Manufacturing industries and ecosystem health. In Managing for healthy ecosystems. CRC Press.Google Scholar
  58. Pereira, P., Pablo, H. d., Vale, C., & Pacheco, M. (2010). Combined use of environmental data and biomarkers in fish (Liza aurata) inhabiting a eutrophic and metal-contaminated coastal system—gills reflect environmental contamination. Marine Environmental Research, 69(2), 53–62. doi: 10.1016/j.marenvres.2009.08.003.CrossRefGoogle Scholar
  59. Peters, G. R., McCurdy, R. F., & Hindmarsh, J. T. (1996). Environmental aspects of arsenic toxicity. Critical Reviews in Clinical Laboratory Sciences, 33(6), 457–493.CrossRefGoogle Scholar
  60. Santhi, V. A., & Mustafa, A. M. (2013). Assessment of organochlorine pesticides and plasticisers in the Selangor River basin and possible pollution sources. Environmental Monitoring and Assessment, 185(2), 1541–1554.CrossRefGoogle Scholar
  61. Sany, S. B. T., Salleh, A., Rezayi, M., Saadati, N., Narimany, L., & Tehrani, G. M. (2013). Distribution and contamination of heavy metal in the coastal sediments of Port Klang, Selangor, Malaysia. Water Air Soil Pollution, 224, 1476. doi: 10.1007/s11270-013-1476-6.CrossRefGoogle Scholar
  62. Sarkar, D., & Datta, R. (2004). Arsenic fate and bioavailability in two soils contaminated with sodium arsenate pesticide: an incubation study. Bulletin of Environmental Contamination and Toxicology, 72(2), 240–247. doi: 10.1007/s00128-003-9031-6.CrossRefGoogle Scholar
  63. Segura, R., Arancibia, V., Zúñiga, M. C., & Pastén, P. (2006). Distribution of copper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho River in Santiago, Chile. Journal of Geochemical Exploration, 91(1–3), 71–80. doi: 10.1016/j.gexplo.2006.03.003.CrossRefGoogle Scholar
  64. Sim, S. F., Ling, T. Y., Nyanti, L., Gerunsin, N., Wong, Y. E., & Kho, L. P. (2016). Assessment of heavy metals in water, sediment, and fishes of a large tropical hydroelectric dam in Sarawak, Malaysia. Journal of Chemistry.Google Scholar
  65. Stephens, F., & Ingram, M. (2006). Two cases of fish mortality in low pH, aluminium rich water. Journal of Fish Diseases, 29(12), 765–770.CrossRefGoogle Scholar
  66. Tekin-Özan, S., & Aktan, N. (2012). Relationship of heavy metals in water, sediment and tissues with total length, weight and seasons of Cyprinus carpio L., 1758 from Işikli Lake (Turkey). Pakistan Journal of Zoology, 44(5), 1405–1416.Google Scholar
  67. Terra, B. F., Araújo, F. G., Calza, C. F., Lopes, R. T., & Teixeira, T. P. (2008). Heavy metal in tissues of three fish species from different trophic levels in a tropical Brazilian river. Water, Air, and Soil Pollution, 187(1–4), 275–284. doi: 10.1007/s11270-007-9515-9.Google Scholar
  68. Thielen, F., Zimmermann, S., Baska, F., Taraschewski, H., & Sures, B. (2004). The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbel as a bioindicator for metal pollution in the Danube River near Budapest, Hungary. Environmental Pollution, 129(3), 421–429.CrossRefGoogle Scholar
  69. USEPA. (1994). Method 3015, microwave assisted acid digestion of aqueous samples and extracts. Washington, DC: USEPA.Google Scholar
  70. USEPA. (1999). Surface water sampling, field sampling guidance document # 1225. California: USEPA.Google Scholar
  71. USEPA. (2007). Method 3051A, microwave assisted acid digestion of sediments, sludges, soils and oils. Washington, DC: USEPA.Google Scholar
  72. Vicente-Martorell, J. J., Galindo-Riaño, M. D., García-Vargas, M., & Granado-Castro, M. D. (2009). Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. Journal of Hazardous Materials, 162(2–3), 823–836. doi: 10.1016/j.jhazmat.2008.05.106.CrossRefGoogle Scholar
  73. Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232.CrossRefGoogle Scholar
  74. Yi, Y. J., & Zhang, S. H. (2012). Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River. Environmental Science and Pollution Research, 19(9), 3989–3996. doi: 10.1007/s11356-012-0840-1.CrossRefGoogle Scholar
  75. Yildiz, M. (2008). Mineral composition in fillets of sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata): a comparison of cultured and wild fish. Journal of Applied Ichthyology, 24(5), 589–594. doi: 10.1111/j.1439-0426.2008.01097.x.CrossRefGoogle Scholar
  76. Zhou, H. Y., & Wong, M. H. (2000). Mercury accumulation in freshwater fish with emphasis on the dietary influence. Water Research, 34(17), 4234–4242. doi: 10.1016/S0043-1354(00)00176-7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Institute of Graduate StudiesUniversity of MalayaKuala LumpurMalaysia
  3. 3.Faculty of Earth ScienceUniversiti Malaysia KelantanKelantanMalaysia
  4. 4.Department of ChemistryNorthwest University KanoKanoNigeria
  5. 5.East Coast Environmental Research Institute (ESERI)Universiti Sultan Zainal AbidinKuala TerengganuMalaysia
  6. 6.Fisheries Research Institute, Freshwater Fisheries Research DivisionJelebuMalaysia

Personalised recommendations