Assessing spatio-temporal trend of vector breeding and dengue fever incidence in association with meteorological conditions

  • Afifa Malik
  • Abdullah Yasar
  • Amtul Bari Tabinda
  • Ihsan Elahi Zaheer
  • Khalida Malik
  • Adeeba Batool
  • Yusra Mahfooz


Th aim of this study is to investigate spatio-temporal trends of dengue vector breeding and epidemic (disease incidence) influenced by climatic factors. The spatio-temporal (low-, medium-, and high-intensity periods) evaluation of entomological and epidemiological investigations along with climatic factors like rainfall (RF), temperature (Tmax), relative humidity (RH), and larval indexing was conducted to develop correlations in the area of Lahore, Pakistan. The vector abundance and disease transmission trend was geo-tagged for spatial insight. The sufficient rainfall events and optimum temperature and relative humidity supported dengue vector breeding with high larval indices for water-related containers (27–37%). Among temporal analysis, the high-intensity period exponentially projected disease incidence followed by post-rainfall impacts. The high larval incidence that was observed in early high-intensity periods effected the dengue incidence. The disease incidence had a strong association with RF (r = 0.940, α = 0.01). The vector larva occurrence (r = 0.017, α = 0.05) influenced the disease incidence. Similarly, RH (r = 0.674, α = 0.05) and average Tmax (r = 0.307, α = 0.05) also induced impact on the disease incidence. In this study, the vulnerability to dengue fever highly correlates with meteorological factors during high-intensity period. It provides area-specific understanding of vector behavior, key containers, and seasonal patterns of dengue vector breeding and disease transmission which is essential for preparing an effective prevention plan against the vector.


Dengue incidence Larva occurrence Breeding sites Temporal trend Climatic effect Larval indices 



The authors would like to thank the team of Dengue Vector Control and Prevention Unit Data Gunj Bukhsh Town Lahore for all of field assistance during this project. We also thank the Director Punjab Information Technology Board for providing the meteorological health data entries.

Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants performed by any of the authors.


  1. Arunachalam, N., Tana, S., Espino, F., Kittayapong, P., Abeyewickrem, W., Wai, K. T., Tyagi, B. K., Kroeger, A., Sommerfeld, J., & Petzold, M. (2010). Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia. Bulletin of the World Health Organization, 88(3), 173–184.CrossRefGoogle Scholar
  2. Bandyopadhyay, S., & Skoufias, E. (2015). Rainfall variability, occupational choice, and welfare in rural Bangladesh. Review of Economics of the Household, 13(3), 589–634.CrossRefGoogle Scholar
  3. Banu, S., Hu, W., Guo, Y., Hurst, C., & Tong, S. (2014). Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh. Environment International, 63, 137–142.CrossRefGoogle Scholar
  4. Bennett, S. N., Drummond, A. J., Kapan, D. D., Suchard, M. A., Munoz-Jordan, J. L., Pybus, O. G., Holmes, E. C., & Gubler, D. J. (2010). Epidemic dynamics revealed in dengue evolution. Molecular Biology and Evolution, 27(4), 811–818.CrossRefGoogle Scholar
  5. Bouzid, M., Brainard, J., Hooper, L., & Hunter, P. R. (2016). Public health interventions for Aedes control in the time of Zikavirus—a meta-review on effectiveness of vector control strategies. PLoS Neglected Tropical Diseases, 10(12), e0005176.CrossRefGoogle Scholar
  6. Chen, S. C., Liao, C. M., Chio, C. P., Chou, H. H., You, S. H., & Cheng, Y. H. (2010). Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis. Science of the Total Environment, 408(19), 4069–4075.CrossRefGoogle Scholar
  7. Cheong, Y. L., Burkart, K., Leitão, P. J., & Lakes, T. (2013). Assessing weather effects on dengue disease in Malaysia. International Journal of Environmental Research and Public Health, 10(12), 6319–6334.CrossRefGoogle Scholar
  8. Cheong, Y. L., Leitão, P. J., & Lakes, T. (2014). Assessment of land use factors associated with dengue cases in Malaysia using boosted regression trees. Spatial and spatio-temporal epidemiology, 10, 75–84.CrossRefGoogle Scholar
  9. Dhimal, M., Gautam, I., Joshi, H. D., O’Hara, R. B., Ahrens, B., & Kuch, U. (2015). Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal. PLoS Neglected Tropical Diseases, 9(3), e0003545.CrossRefGoogle Scholar
  10. Dieng, H., Hassan, A. A., Satho, T., Miake, F., Salmah, M. R. C., & AbuBakar, S. (2011). Insecticide susceptibility of the dengue vector Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia. Asian Pacific Journal of Tropical Disease, 1(2), 94–99.Google Scholar
  11. Dom, N. C., Ahmad, A. H., Ishak, A. R., & Ismail, R. (2013). Assessing the risk of dengue fever based on the epidemiological, environmental and entomological variables. Procedia-Social and Behavioral Sciences, 105, 183–194.CrossRefGoogle Scholar
  12. Estallo, E. L., Carbajo, A. E., Grech, M. G., Frías-Céspedes, M., López, L., Lanfri, M. A., Ludueña-Almeida, F. F., & Almirón, W. R. (2014). Spatio-temporal dynamics of dengue 2009 outbreak in Córdoba City, Argentina. Acta Tropica, 136, 129–136.CrossRefGoogle Scholar
  13. Gama, Z. P., & Nakagoshi, N. (2013). Climatic variability and dengue haemaorrhagic fever incidence in Nganjuk district, East Java, Indonesia. Acta Biologica Malaysiana, 2(1), 31–39.Google Scholar
  14. Giriyanna, G., Sridevi, K., Madhusudan, M., & Ravi, K. (2015). Awareness regarding dengue fever among the link workers of urban health centres of Bengaluru City-South India. Asian Pacific Journal of Tropical Disease, 5, S42–S44.CrossRefGoogle Scholar
  15. Gubler, D. J. (2011). Dengue, Urbanization and Globalization: The Unholy Trinity of the 21 (st) Century. Tropical Medicine and Health, 39, 3–11. doi: 10.2149/tmh.2011-S05.
  16. Harinder, S., & Sukhmeet, M. (2014). A study of larval indices of Aedes and the risk for dengue outbreak. Sch. Acad. J. Biosci., 2(8), 544–547.Google Scholar
  17. Honório, N. A., Codeço, C. T., Alves, F. C., Magalhães, M. A. F. M., & Lourenço-de-Oliveira, R. (2009). Temporal distribution of Aedes aegypti in different districts of Rio de Janeiro, Brazil, measured by two types of traps. Journal of Medical Entomology, 46(5), 1001–1014.CrossRefGoogle Scholar
  18. Mohiddin, A., Jaal, Z., Lasim, A. M., Dieng, H., & Zuharah, W. F. (2015). Assessing dengue outbreak areas using vector surveillance in north east district, Penang Island, Malaysia. Asian Pacific Journal of Tropical Disease, 5(11), 869–876.CrossRefGoogle Scholar
  19. Mohiddin, A., Lasim, A. M., & Zuharah, W. F. (2016). Susceptibility of Aedes albopictus from dengue outbreak areas to temephos and Bacillus thuringiensis subsp. israelensis. Asian Pacific Journal of Tropical Biomedicine, 6(4), 295–300.Google Scholar
  20. Naqvi, S. A. A., Kazmi, S. J. H., Shaikh, S., & Akram, M. (2015). Evaluation of prevalence patterns of dengue fever in Lahore District through geo-spatial techniques. Journal of Basic & Applied Sciences, 11, 20.CrossRefGoogle Scholar
  21. Padmanabha, H., Correa, F., Legros, M., Nijhout, H. F., Lord, C., & Lounibos, L. P. (2012). An eco-physiological model of the impact of temperature on Aedes aegypti life history traits. Journal of Insect Physiology, 58(12), 1597–1608.CrossRefGoogle Scholar
  22. Ramasamy, R., Surendran, S. N., Jude, P. J., Dharshini, S., & Vinobaba, M. (2011). Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases. PLoS Neglected Tropical Diseases, 5(11), e1369.CrossRefGoogle Scholar
  23. Rodriguez-Roche, R., & Gould, E. A. (2013). Understanding the dengue viruses and progress towards their control. BioMed Research International. doi: 10.1155/2013/690835.
  24. Sarfraz, M. S., Tripathi, N. K., Tipdecho, T., Thongbu, T., Kerdthong, P., & Souris, M. (2012). Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC Public Health, 12(1), 853.CrossRefGoogle Scholar
  25. Sutherst, R. W. (2004). Global change and human vulnerability to vector-borne diseases. Clinical Microbiology Reviews, 17(1), 136–173.CrossRefGoogle Scholar
  26. Tran, A., L’Ambert, G., Lacour, G., Benoît, R., Demarchi, M., Cros, M., Cailly, P., Aubry-Kientz, M., Balenghien, T., & Ezanno, P. (2013). A rainfall-and temperature-driven abundance model for Aedes albopictus populations. International Journal of Environmental Research and Public Health, 10(5), 1698–1719.CrossRefGoogle Scholar
  27. Tsai, C. T., Sung, F. C., Chen, P. S., & Lin, S. C. (2012). Exploring the spatial and temporal relationships between mosquito population dynamics and dengue outbreaks based on climatic factors. Stochastic Environmental Research and Risk Assessment, 26(5), 671–680.CrossRefGoogle Scholar
  28. Urdaneta-Marquez, L., & Failloux, A. B. (2011). Population genetic structure of Aedes aegypti, the principal vector of dengue viruses. Infection, Genetics and Evolution, 11(2), 253–261.CrossRefGoogle Scholar
  29. Wongkoon, S., Jaroensutasinee, M., & Jaroensutasinee, K. (2013). Distribution, seasonal variation & dengue transmission prediction in Sisaket, Thailand. The Indian Journal of Medical Research, 138(3), 347.Google Scholar
  30. Wu, P. C., Guo, H. R., Lung, S. C., Lin, C. Y., & Su, H. J. (2007). Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Tropica, 103(1), 50–57.CrossRefGoogle Scholar
  31. Wu, P. C., Lay, J. G., Guo, H. R., Lin, C. Y., Lung, S. C., & Su, H. J. (2009). Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Science of the Total Environment, 407(7), 2224–2233.CrossRefGoogle Scholar
  32. Wu, X., Lu, Y., Zhou, S., Chen, L., & Xu, B. (2016). Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environment International, 86, 14–23.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Afifa Malik
    • 1
  • Abdullah Yasar
    • 1
  • Amtul Bari Tabinda
    • 1
  • Ihsan Elahi Zaheer
    • 2
  • Khalida Malik
    • 3
  • Adeeba Batool
    • 1
  • Yusra Mahfooz
    • 1
  1. 1.Sustainable Development Study CenterGovernment College UniversityLahorePakistan
  2. 2.Department of Environmental Sciences and EngineeringGovernment College UniversityFaisalabadPakistan
  3. 3.Department of StatisticsGovernment College UniversityLahorePakistan

Personalised recommendations