Cape Fear: monitoring basic hydrological processes in an outdoor hillslope plot

Article
  • 117 Downloads

Abstract

Cape Fear is an outdoor 7 × 7 m2 hillslope laboratory located at the University of Tuscia, Viterbo, Italy, and is equipped with real-time monitoring sensors used to analyse runoff generation. In this paper, hydrological phenomena that occurred during Cape Fear’s first 2 years of operation are reported to provide insight into the basic dynamics underlying the hydrological response at the hillslope scale. Based on our findings, surface and subsurface runoff are likely driven by rainfall-threshold phenomena, and evapotranspiration phenomena account for more than 70% of rainfall water input. Future studies will investigate the threshold relationship between rainfall and runoff.

Keywords

Cape Fear Experimental plot Runoff Soil water content Hydrological balance 

Notes

Acknowledgements

The University of Tuscia technicians Paolo Ciorba, Giuliano Cipollari, Roberto Rapiti, and Massimo Edoardo Vollaro are acknowledged for their roles in creating Cape Fear and continuous assistance in monitoring the hillslope plot. Dr. Tauro acknowledges support from the UNESCO Chair in Water Resources Management and Culture. The authors thank Dr. Salvatore Grimaldi for insightful discussion of the results.

References

  1. Apiwantragoon, P., Benson, C. H., & Albright, W. H. (2014). Field hydrology of water balance covers for waste containment. Journal of Geotechnical and Geoenvironmental Engineering, 141(2), 04014101.CrossRefGoogle Scholar
  2. Arnaez, J., Lasanta, T., Ruiz-Flaño, P., & Ortigosa, L. (2007). Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil & Tillage Research, 93(2), 324–334.CrossRefGoogle Scholar
  3. Beven, K. (2001). Rainfall-runoff modelling: the primer. West Sussex: Wiley.Google Scholar
  4. Biemelt, D., Schapp, A., & Grünewald, U. (2011). Hydrological observation and modelling relationship for the determination of water budget in Lusatian post-mining landscape. Physics and Chemistry of the Earth, Parts A/B/C, 36(1–4), 3–18.CrossRefGoogle Scholar
  5. Dobriyal, P., Qureshi, A., Badola, R., & Hussain, S. A. (2012). A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458—459, 110–117. doi: 10.1016/j.jhydrol.2012.06.021.CrossRefGoogle Scholar
  6. Feltrin, R. M., dePaiva, J. B. D., dePaiva, E. M. C. D., & Beling, F. A. (2011). Lysimeter soil water balance evaluation for an experiment developed in the southern Brazilian Atlantic Forest region. Hydrological Processes, 25(15), 2321–2328.CrossRefGoogle Scholar
  7. Fu, B., Wang, Y., Xu, P., & Wang, D. (2009). Changes in overland flow and sediment during simulated rainfall events on cropland in hilly areas of the Sichuan Basin, China. Progress in Natural Science, 19(11), 1613–1618.CrossRefGoogle Scholar
  8. Gevaert, A. I., Teuling, A. J., Uijlenhoet, R., DeLong, S. B., Huxman, T. E., Pangle, L. A., Breshears, D. D., Chorover, J., Pelletier, J. D., Saleska, S. R., Zeng, X., & Troch, P. A. (2014). Hillslope-scale experiment demonstrates the role of convergence during two-step saturation. Hydrology and Earth System Sciences, 18(9), 3681–3692. doi: 10.5194/hess-18-3681-2014.CrossRefGoogle Scholar
  9. Ghahramani, A., Ishikawa, Y., Gomi, T., Shiraki, K., & Miyata, S. (2011). Effect of ground cover on splash and sheetwash erosion over a steep forested hillslope: a plot-scale study. Catena, 85(1), 34–47.CrossRefGoogle Scholar
  10. Gómez, J. A., Vanderlinden, K., & Nearing, M. A. (2005). Spatial variability of surface roughness and hydraulic conductivity after disk tillage: implications for runoff variability. Journal of Hydrology, 311(1–4), 143–156.CrossRefGoogle Scholar
  11. Gomi, T., Sidle, R. C., & Richardson, J. (2002). Understanding processes and downstream linkages of headwater systems. Bioscience, 52(10), 905–916.CrossRefGoogle Scholar
  12. Grimaldi, S., Petroselli, A., Baldini, L., & Gorgucci, E. (2017). Description and preliminary results of a 100 square meter rain gauge. Journal of Hydrology. doi: 10.1016/j.jhydrol.2015.09.076.
  13. He, Z., Zhao, W., Liu, H., & Chang, X. (2012). The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: a case study in northwestern China’s Qilian Mountains. Journal of Hydrology, 420–421, 183–190.CrossRefGoogle Scholar
  14. He, Z., Weng, H., Ho, H., Ran, Q., & Mao, M. (2014). Soil erosion and pollutant transport during rainfall-runoff processes. Water Resources, 41(5), 604–611.CrossRefGoogle Scholar
  15. Heisler-White, J. L., Knapp, A. K., & Kelly, E. F. (2008). Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia, 158(1), 129–140. doi: 10.1007/s00442-008-1116-9.CrossRefGoogle Scholar
  16. Hofer, M., Lehmann, P., Biemelt, D., Stähli, M., & Krafczyk, M. (2011). Modelling subsurface drainage pathways in an artificial catchment. Physics and Chemistry of the Earth, Parts A/B/C, 36(1–4), 101–112. doi: 10.1016/j.pce.2010.04.020.CrossRefGoogle Scholar
  17. Hrnčíř, M., Šanda, M., Kulasová, A., & Císlerová, M. (2010). Runoff formation in a small catchment at hillslope and catchment scales. Hydrological Processes, 24(16), 2248–2256.CrossRefGoogle Scholar
  18. Janzen, D., & McDonnell, J. J. (2015). A stochastic approach to modelling and understanding hillslope runoff connectivity dynamics. Ecological Modelling, 298, 64–74.CrossRefGoogle Scholar
  19. Kampf, S. K., & Burges, S. J. (2010). Quantifying the water balance in a planar hillslope plot: effects of measurement errors on flow prediction. Journal of Hydrology, 380(1–2), 191–202.CrossRefGoogle Scholar
  20. Kendall, C., McDonnell, J. J., & Gu, W. Z. (2001). A look inside ‘black box’ hydrograph separation models: a study at the Hydrohill catchment. Hydrological Processes, 15(10), 1877–1902.CrossRefGoogle Scholar
  21. Li, X., Niu, J. Z., Li, J., Xie, B. Y., Han, Y. N., Tan, J. P., & Zhang, Y. H. (2012). Characteristics of runoff and sediment generation of forest vegetation on a hill slope by use of artificial rainfall apparatus. Journal of Forestry Research, 23(3), 419–424.CrossRefGoogle Scholar
  22. Li, Q., Zhu, Q., Zheng, J., Liao, K., & Yang, G. (2015). Soil moisture response to rainfall in forestland and vegetable plot in Taihu Lake Basin, China. Chinese Geographical Science, 25(4), 426–437. doi: 10.1007/s11769-014-0715-0.CrossRefGoogle Scholar
  23. Liu, G., Tian, G., Shu, D., Lin, S., & Lui, S. (2005). Characteristics of surface runoff and throughflow in a purple soil of southwestern China under various rainfall events. Hydrological Processes, 19(9), 1883–1891.CrossRefGoogle Scholar
  24. Luo, C., Gao, Y., Zhu, B., & Wang, T. (2013). Sprinkler-based rainfall simulation experiments to assess nitrogen and phosphorus losses from a hillslope cropland of purple soil in China. Sustainability of Water Quality and Ecology., 1-2, 40–47.CrossRefGoogle Scholar
  25. Miyata, S., Kosugi, K., Gomi, T., & Mizuyama, T. (2009). Effects of forest floor coverage on overland flow and soil erosion on hillslopes in Japanese cypress plantation forests. Water Resources Research, 45(6), W06402. doi: 10.1029/2008WR007270.CrossRefGoogle Scholar
  26. Mu, W., Yu, F., Li, C., Xie, Y., Tian, J., Liu, J., & Zhao, N. (2015). Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water, 7(6), 2990–3008.CrossRefGoogle Scholar
  27. Niu, G. Y., Pasetto, D., Scudeler, C., Paniconi, C., Putti, M., Troch, P. A., DeLong, S. B., Dontsova, K., Pangle, L., Breshears, D. D., Chorover, J., Huxman, T. E., Pelletier, J., Saleska, S. R., & Zeng, X. (2014). Incipient subsurface heterogeneity and its effect on overland flow generation—insight from a modeling study of the first experiment at the biosphere 2 landscape evolution observatory. Hydrology and Earth System Sciences, 18(5), 1873–1883. doi: 10.5194/hess-18-1873-2014.CrossRefGoogle Scholar
  28. Petroselli, A., Leone, A., Ripa, M. N., & Recanatesi, F. (2014). Linking phosphorus export and hydrologic modeling: a case study in Central Italy. Environmental Monitoring and Assessment., 186(11), 7849–7861.CrossRefGoogle Scholar
  29. Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., Ogden, F., Selker, J., & Wendroth, O. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: a review. Vadose Zone Journal, 7(1), 358–389. doi: 10.2136/vzj2007.0143.CrossRefGoogle Scholar
  30. Sarkar, R., Dutta, S., & Dubey, A. K. (2015). An insight into the runoff generation processes in wet sub-tropics: field evidences from a vegetated hillslope plot. Catena, 128, 31–43.CrossRefGoogle Scholar
  31. Stomph, T. J., deRidder, N., Steenhuis, T. S., & VandeGiesen, N. C. (2002). Scale effects of Hortonian overland flow and rainfall-runoff dynamics: laboratory validation of a process-based model. Earth Surface Processes and Landforms, 27(8), 847–855. doi: 10.1002/esp.356.CrossRefGoogle Scholar
  32. Sun, F., Lü, Y., Wang, J., Hu, J., & Fu, B. (2015). Soil moisture dynamics of typical ecosystems in response to precipitation: a monitoring-based analysis of hydrological service in the Qilian Mountains. Catena, 129, 63–75.CrossRefGoogle Scholar
  33. Tauro, F., Grimaldi, S., Petroselli, A., Rulli, M. C., & Porfiri, M. (2012). Fluorescent particle tracers in surface hydrology: a proof of concept in a semi-natural hillslope. Hydrology and Earth System Sciences, 16(8), 2973–2983.CrossRefGoogle Scholar
  34. Templeton, R. C., Vivoni, E. R., Méndez-Barroso, L. A., Pierini, N. A., Anderson, C. A., Rango, A., Laliberte, A. S., & Scott, R. L. (2014). High-resolution characterization of a semiarid watershed: implications on evapotranspiration estimates. Journal of Hydrology, 509, 306–319.CrossRefGoogle Scholar
  35. Troch, P. A., Carrillo, G. A., Heidbüchel, I., Rajagopal, S., Switanek, M., Volkmann, T. H. M., & Yaeger, M. (2009). Dealing with landscape heterogeneity in watershed hydrology: a review of recent progress toward new hydrological theory. Geography Compass, 3(1), 375–392. doi: 10.1111/j.1749-8198.2008.00186.x.CrossRefGoogle Scholar
  36. Yaseef, N. R., Yakir, D., Rotenberg, E., Schiller, G., & Cohen, S. (2010). Ecohydrology of a semi-arid forest: partitioning among water balance components and its implications for predicted precipitation changes. Ecohydrology, 3(2), 143–154. doi: 10.1002/eco.65.Google Scholar
  37. Yu, Y., Wei, W., Chen, L. D., Jia, F. Y., Yang, L., Zhang, H. D., & Feng, T. J. (2015). Responses of vertical soil moisture to rainfall pulses and land uses in a typical loess hilly area, China. Solid Earth, 6(2), 595–608.CrossRefGoogle Scholar
  38. Zehe, E., & Blöschl, G. (2004). Predictability of hydrologic response at the plot and catchment scales: role of initial conditions. Water Resources Research, 40(10), W10202. doi: 10.1029/2003WR 002869.CrossRefGoogle Scholar
  39. Zhang, S., Liu, C., Yao, Z., & Guo, L. (2007). Experimental study on lag time for a small watershed. Hydrological Processes, 21(8), 1045–1054. doi: 10.1002/hyp.6285.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Economy and Enterprise (DEIM)Tuscia UniversityViterboItaly
  2. 2.Department for Innovation in Biological, Agro-food and Forest systems (DIBAF)Tuscia UniversityViterboItaly

Personalised recommendations