Skip to main content

Advertisement

Log in

Changes in wintertime pH and hydrography of the Gulf of Finland (Baltic Sea) with focus on depth layers

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We studied changes in sea water pH, temperature and salinity with focus on two depth layers, along the Gulf of Finland (the Baltic Sea) using long-term monitoring data from 1979 to 2015. Data from the most frequently sampled monitoring stations between western and eastern Gulf of Finland were used. The main result of the study reveals that pH has decreased both in surface and deep-water in the western Gulf of Finland with values ranging between −0.005 and −0.008 units year−1. We also demonstrate a rise in temperature (~2 °C) and decrease in salinity (~−0.7 g kg−1) at several stations over the last 36 years. In general, the changes are shown to be more pronounced in the western part of the gulf. This paper also stresses the importance of improving the sampling frequency and quality of monitoring measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahtiainen, H., Artell, J., Elmgren, R., Hasselström, L., & Håkansson, C. (2014). Baltic Sea nutrient reductions—what should we aim for? Journal of Environmental Management, 145, 9–23.

    Article  CAS  Google Scholar 

  • Aleksandrov, S. V., Zhigalova, N. N., & Zezera, A. S. (2009). Long-term dynamics of zooplankton in the southeastern Baltic Sea. Russian Journal of Marine Biology, 35(4), 296–304.

    Article  Google Scholar 

  • Alenius, P., Myrberg, K., & Nekrasov, A. (1998). The physical oceanography of the Gulf of Finland: a review. Boreal Environment Research, 3, 97–125.

    Google Scholar 

  • Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K., Fleming-Lehtinen, V., Gustafsson, B. G., et al. (2015). Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biological Reviews. doi:10.1111/brv.12221.

    Google Scholar 

  • Andersson, P., Håkansson, B., Håkansson, J., Sahlsten, E., Havenhand, J., Thorndyke, M., & Dupont, S. (2008). Marine acidification—on effects and monitoring of marine acidification in the seas surrounding Sweden. SMHI, Oceanography No 92, Sweden.

  • Andrejev, O., Myrberg, K., & Lundberg, P. A. (2004). Age and renewal time of water masses in a semi-enclosed basin—application to the Gulf of Finland. Tellus, 56(5), 548–558.

    Google Scholar 

  • Antsulevitch, A. E., Välipakka, P., & Valovirta, I. (2003). How are the zebra mussels doing in the Gulf of Finland. Proceedings of the Estonian Academy of Sciences, 52(3), 268–283.

    Google Scholar 

  • Axe, P. (2007). Hydrography and oxygen in the deep basins. HELCOM Baltic Sea Environment Fact Sheets. http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/. Accessed 21 March 2016.

  • BACC I Author Team (2008). Assessment of climate change for the Baltic Sea Basin. Berlin: Springer-Verlag.

  • BACC II Author Team (2015). Second assessment of climate change for the Baltic Sea Basin. New York: Springer-Verlag.

  • Brutemark, A., Engström-Öst, J., & Vehmaa, A. (2011). Long-term monitoring data reveal pH dynamics, trends and variability in the western Gulf of Finland. Oceanological and Hydrobiological Studies, 40(3), 91–94.

    Article  CAS  Google Scholar 

  • Caldeira, K., & Wickett, M. E. (2003). Oceanography: anthropogenic carbon and ocean pH. Nature, 425(6956), 365.

    Article  CAS  Google Scholar 

  • Conley, D. J. (2012). Ecology: save the Baltic Sea. Nature, 486(7404), 463–464.

    Article  CAS  Google Scholar 

  • Conley, D. J., Humborg, C., Smedberg, E., Rahm, L., Papush, L., Danielsson, Å., et al. (2008). Past, present and future state of the biogeochemical Si cycle in the Baltic Sea. Journal of Marine Systems, 73(3–4), 338–346.

    Article  Google Scholar 

  • Crawley, M. J. (2013). The R book, 2nd edition. Wiley-Blackwell.

  • Fonselius, S., & Valderrama, J. (2003). One hundred years of hydrographic measurements in the Baltic Sea. Journal of Sea Research, 49(4), 229–241.

    Article  Google Scholar 

  • GoF Year 2014 Team (2014). Gulf of Finland Year 2014- Assessment.

  • Grasshoff, K. (1983). Determination of pH. In K. Grasshoff, M. Ehrhardt, & K. Kremling (Eds.), Methods of sea water analysis (pp. 83–97). Weinheim: Verlag Chemie.

  • Hjalmarsson, S., Wesslander, K., Anderson, L. G., Omstedt, A., Perttilä, M., & Mintrop, L. (2008). Distribution, long-term development and mass balance calculation of total alkalinity in the Baltic Sea. Continental Shelf Research, 28(4–5), 593–601.

    Article  Google Scholar 

  • Hoegh-Guldberg, O. (2010). Dangerous shifts in ocean ecosystem function? The ISME Journal, 4, 1090–1092.

    Article  Google Scholar 

  • IPCC. (2007). Climate change 2007: the physical science basis. In Solomon et al. (Eds.), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (pp. 1–996). London: Cambridge Univ. Press.

    Google Scholar 

  • Kabel, K., Moros, M., Porsche, C., Neumann, T., Adolphi, F., Andersen, T. J., et al. (2012). Impact of climate change on the Baltic Sea ecosystem over the past 1,000 years. Nature Climate Change, 2, 871–874.

    Article  Google Scholar 

  • Kahma, K.K., & Voipio, A. (1990). Elimination of seasonal variation from long-term changes of some nutrients in the Baltic Sea. Finnish Marine Research, 257, 3–14.

  • Kjellström, E., & Ruosteenoja, K. (2007). Present-day and future precipitation in the Baltic Sea region as simulated in a suite of regional climate models. Climatic Change, 81(1), 281–291.

    Article  Google Scholar 

  • Koroleff, F. (1979). Methods for the chemical analysis of seawater. Meri, 7, 15–16.

  • Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., et al. (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology, 19(6), 1884–1896.

    Article  Google Scholar 

  • Kuliński, K., Schneider, B., Hammer, K., Machulik, U., & Schulz-Bull, D. (2014). The influence of dissolved organic matter on the acid–base system of the Baltic Sea. Journal of Marine Systems, 132, 106–115.

    Article  Google Scholar 

  • Launiainen, J., & Koljonen, J. (1982). Variation of salinity at Finnish fixed hydrographic stations in the Gulf of Finland and the river runoff to the Baltic Sea. Meri, 11, 39–50.

    Google Scholar 

  • Lehmann, A., Getzlaff, K., & Harlaß, J. (2011). Detailed assessment of climate variability of the Baltic Sea area for the period 1958–2009. Climate Research, 46(2), 185–196.

    Article  Google Scholar 

  • Löffler, A., Schneider, B., Perttilä, M., & Rehder, G. (2012). Air–sea CO2 exchange in the Gulf of Bothnia, Baltic Sea. Continental Shelf Research, 37, 46–56.

    Article  Google Scholar 

  • McDougall, T. J., Jackett, D. R., Millero, F. J., Pawlowicz, R., & Barker, P. M. (2012). A global algorithm for estimating absolute salinity. Ocean Science, 8(6), 1123–1134.

    Article  Google Scholar 

  • Meier, M., Kjellström, E., & Graham, P. (2006). Estimating uncertainties of projected Baltic Sea salinity in the late 21st century. Geophysical Research Letters, 33, L15705. doi:10.1029/2006GL026488.

    Article  Google Scholar 

  • Merkouriadi, I., & Leppäranta, M. (2014). Long-term analysis of hydrography and sea-ice data in Tvärminne, Gulf of Finland, Baltic Sea. Climate Change, 124(4), 849–859.

    Article  CAS  Google Scholar 

  • Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., & Gräwe, U. (2015). Fresh oxygen for the Baltic Sea—an exceptional saline inflow after a decade of stagnation. Journal of Marine Systems, 148, 152–166.

    Article  Google Scholar 

  • Müller, J. D., Schmeider, B., & Rehder, G. (2016). Long-term alkalinity trends in the Baltic Sea and their implications for CO2-induces acidification. Limnology and Oceanography, 61(6), 1984–2002.

    Article  Google Scholar 

  • Myrberg, K., Ryabchenko, V., Isaev, A., Vankevich, R., Andrejev, O., Bendtsen, J., et al. (2010). Validation of three-dimensional hydrodynamic models of the Gulf of Finland. Boreal Environmental Research, 15(5), 453–479.

    Google Scholar 

  • National Board of Waters (1981). Vesiviranomaisen käyttämät analyysimenetelmät. National Board of Waters, Helsinki, Report 213, (in Finnish).

  • Ojaveer, H., Jaanus, A., MacKenzie, B. R., Martin, G., Olenin, S., Radziejewska, et al. (2010). Status of biodiversity in the Baltic Sea. PloS One. doi:10.1371/journal.pone.0012467.

    Google Scholar 

  • Omstedt, A., Edman, M. O. A., Anderson, L. G., & Laudon, H. (2010). Factors influencing the acid–base (pH) balance in the Baltic Sea: a sensitivity analysis. Tellus B, 62(4), 280–295.

    Article  Google Scholar 

  • Omstedt, A., Humborg, C., Pempkowiak, J., Perttilä, M., Rutgersson, A., Schneider, B., & Smith, B. (2014). Biogeochemical control of the coupled CO2–O2 system of the Baltic Sea: a review of the results of Baltic-C. Ambio, 43(1), 49–59.

    Article  CAS  Google Scholar 

  • Perttilä, M. (2012). Marine carbon dioxide. In I. Haapala (Ed.), From the Earthʼs Core to outer space (pp. 163–170). Berlin: Springer.

    Chapter  Google Scholar 

  • Ruuskanen, A., & Bäck, S. (1999). Morphological variation of northern Baltic Sea Fucus vesiculosus L. Ophelia, 50(1), 43–59.

    Article  Google Scholar 

  • Soomere, T., Leppäranta, M., & Myrberg, K. (2009). Highlights of the physical oceanography of the Gulf of Finland reflecting potential climate changes. Boreal Environmental Research, 14(1), 152–165.

    Google Scholar 

  • Suikkanen, S., Pulina, S., Engström-Öst, J., Lehtiniemi, M., Lehtinen, S., & Brutemark, A. (2013). Climate change and eutrophication induced shifts in northern summer plankton communities. PloS One. doi:10.1371/journal.pone.0066475.

    Google Scholar 

  • Sunda, W. G., & Cai, W.-J. (2012). Eutrophication induced CO2-acidification of subsurface coastal waters: interactive effects of temperature, salinity, and atmospheric pCO2. Environmental Science & Technology, 46(19), 10651–10659.

    Article  CAS  Google Scholar 

  • SYKE (2016). The Gulf of Finland assessment. Reports of the Finnish environment institute 27. https://helda.helsinki.fi/handle/10138/166296. Accessed 14 November 2016

  • Tockner, K., Uehlinger, U., & Robinson, C. T. (2009). Rivers of Europe. London: Academic Press.

  • Tyrrell, T., Schneider, B., Charalampopoulou, A., & Riebesell, U. (2008). Coccolithophores and calcite saturation state in the Baltic and Black Seas. Biogeosciences, 5(2), 485–494.

    Article  CAS  Google Scholar 

  • Vihma, T., & Haapala, J. (2009). Geophysics of sea ice in the Baltic Sea: a review. Progress in Oceanography, 80(3–4), 129–148.

    Article  Google Scholar 

  • Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J., Montesino-Pouzols, F., et al. (2015). Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas–implications for environmental monitoring. Ecological Indicators, 50, 196–205.

    Article  Google Scholar 

  • Wesslander, K. (2011). The carbon dioxide system in the Baltic Sea surface waters. PhD thesis, University of Gothenburg, Göteborg.

  • Wesslander, K., Omstedt, A., & Schneider, B. (2010). Inter-annual and seasonal variations in the air–sea CO2 balance in the Central Baltic Sea and the Kattegat. Continental Shelf Research, 30(14), 1511–1521.

    Article  Google Scholar 

  • Ylöstalo, P., Seppälä, J., Kaitala, S., Maunula, P., & Simis, S. (2016). Loadings of dissolved organic matter and nutrients from the Neva River into the Gulf of Finland—biogeochemical composition and spatial distribution within the salinity gradient. Marine Chemistry, 186, 58–71.

    Article  Google Scholar 

Download references

Acknowledgments

This work would not have been possible without people involved in the sampling campaigns and we would like to thank them. We also would like to acknowledge Kirsi Järvenmäki, Marja Kauppi, Mirja Leivuori, Maarit Matilainen, Teemu Näykki, Riikka Pöntinen, Mika Raateoja, Maarit Risto, Mika Sarkkinen, Kimmo Tikka and Pentti Välipakka for their help with the methodology as well as Andreas Lindén for statistical advices. The study was supported by the Academy of Finland (project nr. 276947) and Victoriastiftelsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna-Karin Almén.

Additional information

Anna-Karin Almén and Olivier Glippa contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almén, AK., Glippa, O., Pettersson, H. et al. Changes in wintertime pH and hydrography of the Gulf of Finland (Baltic Sea) with focus on depth layers. Environ Monit Assess 189, 147 (2017). https://doi.org/10.1007/s10661-017-5840-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5840-7

Keywords

Navigation