Advertisement

Environmental monitoring by surface sampling for cytotoxics: a review

  • Petit Marie
  • Curti Christophe
  • Roche Manon
  • Montana Marc
  • Bornet Charleric
  • Vanelle Patrice
Article

Abstract

Environmental monitoring is usually conducted by surface sampling to detect and quantify the presence of cytotoxic drugs after their reconstitution and administration. This technique reveals the origins of residual contamination and is an important component in order to protect healthcare workers from the potential risk of occupational exposure. The aim of this work is to compare various techniques and results of surface sampling for cytotoxics. For each technique, sample processing methods and their analysis were compared from literature data. Sampling is often performed by the wiping technique. After treatment, various single or multicompound technical analyses are used, in particular liquid or gas chromatography involving different detection methods: ultraviolet, mass spectrometry, plasma torch, and voltammetry. Some methods are validated to ensure reliability. Despite published guidelines and the use of isolator technology for the preparation of cytotoxic drugs, workplace contamination persists, leading to chemotherapeutic agents’ exposure of healthcare workers. Efforts need to be maintained with particular emphasis on harmonization and on determining alert level for cytotoxic contamination.

Keywords

Cytotoxic drugs Surface sampling Chromatography Hospital 

References

  1. American Society of Health-System Pharmacists. (2006). ASHP guidelines on handling hazardous drugs. American Journal of Health-System Pharmacy, 63(12), 1172–1191.CrossRefGoogle Scholar
  2. ANSM: French National Agency of Medicine and Health Products Safety. (2007). Bonnes pratiques de preparation, chapitre 7: Préparations de médicaments contenant des substances dangereuses pour le personnel et l’environnement. Resource document. http://ansm.sante.fr/var/ansm_site/storage/original/application/a5d6ae4b3d5fdee013ca463462b7b296.pdf. Accessed 20 June 2016. [French].
  3. Baumann, F., & Preiss, R. (2001). Cyclophosphamide and related anticancer drugs. BJournal of Chromatography B, Biomedical Sciences and Applications, 764(1–2), 173–192.CrossRefGoogle Scholar
  4. Brouwers, E. E., Huitema, A. D., Bakker, E. N., Douma, J. W., Schimmel, K. J., Van Weringh, G., et al. (2007). Monitoring of platinum surface contamination in seven Dutch hospital pharmacies using inductively coupled plasma mass spectrometry. International Archives of Occupational and Environmental Health, 80(8), 689–699.CrossRefGoogle Scholar
  5. Bussières, J. F., Tanguay, C., & Touzin, T. (2012). Environmental contamination with hazardous drugs in Quebec Hospitals. Canadian Journal of Hospital Pharmacy, 65(6), 428–435.CrossRefGoogle Scholar
  6. Castiglia, L., Miraglia, N., Pieri, M., Simonelli, A., Basilicata, P., Genovese, G., et al. (2008). Evaluation of occupational exposure to antiblastic drugs in an Italian hospital oncological department. Journal of Occupational Health, 50(1), 48–56.CrossRefGoogle Scholar
  7. Cavallo, D., Ursini, C. L., Perniconi, B., Di Francesco, A., Giglio, M., Rubino, F. M., et al. (2005). Evaluation of genotoxic effects induced by exposure to antineoplastic drugs in lymphocytes and exfoliated buccal cells of oncology nurses and pharmacy employees. Mutation Research, 587(1–2), 45–51.CrossRefGoogle Scholar
  8. Connor, T. H. (2006). Hazardous anticancer drugs in health care: environmental exposure assessment. Annals of the New York Academy of Sciences, 1076, 615–623.CrossRefGoogle Scholar
  9. Connor, T. H., Anderson, R. W., Sessink, P. J., & Spivey, S. M. (2002). Effectiveness of a closed-system device in containing surface contamination with cyclophosphamide and ifosfamide in an i.V. Admixture area. American Journal of Health-System Pharmacy, 59(1), 68–72.Google Scholar
  10. Connor, T. H., Sessink, P. J., Harrison, B. R., Pretty, J. R., Peters, B. G., Alfaro, R. M., et al. (2005). Surface contamination of chemotherapy drug vials and evaluation of new vial-cleaning techniques: results of three studies. American Journal of Health-System Pharmacy, 62(5), 475–484.Google Scholar
  11. Connor, T. H., DeBord, D. G., Pretty, J. R., Oliver, M. S., Roth, T. S., Lees, P. S., et al. (2010). Evaluation of antineoplastic drug exposure of health care workers at three university-based US cancer centers. Journal of Occupational and Environmental Medicine, 52(10), 1019–1027.CrossRefGoogle Scholar
  12. Crauste-Manciet, S., Sessink, P. J., Ferrari, S., Jomier, J. Y., & Brossard, D. (2005). Environmental contamination with cytotoxic drugs in healthcare using positive air pressure isolators. Annals of Occupational Hygiene, 49(7), 619–628.Google Scholar
  13. Donner, A. L. (1978). Possible risk of working with antineoplastic drugs in horizontal laminar flow hoods. American Journal of Hospital Pharmacy, 35(8), 900.Google Scholar
  14. Easty, A. C., Coakley, N., Cheng, R., Cividino, M., Savage, P., Tozer, R., et al. (2015). Safe handling of cytotoxics: guideline recommendations. Current Oncology, 22(1), e27–e37.CrossRefGoogle Scholar
  15. Ensslin, A. S., Pethran, A., Schierl, R., & Fruhmann, G. (1994). Urinary platinum in hospital personnel occupationally exposed to platinum-containing antineoplastic drugs. International Archives of Occupational and Environmental Health, 65(5), 339–342.CrossRefGoogle Scholar
  16. Favier, B., Gilles, L., Ardiet, C., & Latour, J. F. (2003). External contamination of vials containing cytotoxic agents supplied by pharmaceutical manufacturers. Journal of Oncology Pharmacy Practice, 9(1), 15–20.CrossRefGoogle Scholar
  17. Fleury-Souverain, S., Nussbaumer, S., Mattiuzzo, M., & Bonnabry, P. (2014). Determination of the external contamination and cross-contamination by cytotoxic drugs on the surfaces of vials available on the Swiss market. Journal of Oncology Pharmacy Practice, 20(2), 100–111.CrossRefGoogle Scholar
  18. Fransman, W., Huizer, D., Tuerk, J., & Kromhout, H. (2007a). Inhalation and dermal exposure to eight antineoplastic drugs in an industrial laundry facility. International Archives of Occupational and Environmental Health, 80(5), 396–403.CrossRefGoogle Scholar
  19. Fransman, W., Peelen, S., Hilhorst, S., Roeleveld, N., Heederik, D., & Kromhouts, H. (2007b). A pooled analysis to study trends in exposure to antineoplastic drugs among nurses. Annals of Occupational Hygiene, 51(3), 231–239.Google Scholar
  20. Gilbar, P. J. (2005). External contamination of cytotoxic drug vials. Journal of Pharmacy Practice and Research, 35(4), 264–265.CrossRefGoogle Scholar
  21. Gilles, L., Favier, B., Catillon, F., Dussart, C., Peyron, F., Simoens, X., et al. (2009). Optimisation des procédures de manipulation des chimiothérapies anticancéreuses : impact des contrôles de contamination environnementaux. Bulletin du Cancer, 96(9), 839–849 [French].Google Scholar
  22. Hedmer, M., & Wohlfart, G. (2012). Hygienic guidance values for wipe sampling of antineoplasic drugs in Swedish hospitals. Journal of Environmental Monitoring, 14(7), 1968–1675.CrossRefGoogle Scholar
  23. Hedmer, M., Jonsson, B. A., & Nygren, O. (2004). Development and validation of methods for environmental monitoring of cyclophosphamide in workplaces. Journal of Environmental Monitoring, 6(12), 979–984.CrossRefGoogle Scholar
  24. Huizing, M. T., Rosing, H., Koopman, F., Keung, A. C., Pinedo, H. M., & Beijnen, J. H. (1995). High-performance liquid chromatographic procedures for the quantitative determination of paclitaxel (Taxol) in human urine. Journal of chromatography. B, Biomedical sciences and applications, 664(2), 373–382.CrossRefGoogle Scholar
  25. International Agency for Research on Cancer (IARC). (2016). IARC monographs. Resource document. http://monographs.iarc.fr/ENG/Classification/. Accessed 20 June 2016.
  26. International Society of Oncology Pharmacy Practitioners Standards Committee. (2007). ISOPP standards of practice. Safe handling of cytotoxics. Journal of Oncology Pharmacy Practice, 13, 1–81.CrossRefGoogle Scholar
  27. Juhascik, M. P., & Jenkins, A. J. (2009). Comparison of liquid/liquid and solid-phase extraction for alkaline drugs. Journal of Chromatographic Science, 47(7), 553–557.CrossRefGoogle Scholar
  28. Kiffmeyer, T. K., Tuerk, J., Hahn, M., Stuetzer, H., Hadtstein, C., Heinemann, A., et al. (2013). Application and assessment of a regular environmental monitoring of the antineoplastic drug contamination level in pharmacies—the MEWIP project. Annals of Occupational Hygiene, 57(4), 444–455.Google Scholar
  29. Konate, A., Poupon, J., Villa, A., Garnier, R., Hasni-Pichard, H., Mezzaroba, D., et al. (2011). Evaluation of environmental contamination by platinum and exposure risks for healthcare workers during a heated intraperitoneal perioperative chemotherapy (HIPEC) procedure. Journal of Surgical Oncology, 103(1), 6–9.CrossRefGoogle Scholar
  30. Kopp, B., Crauste-Manciet, S., Guibert, A., Mourier, W., Guerrault-Moro, M. N., Ferrari, S., et al. (2013). Environmental and biological monitoring of platinum-containing drugs in two hospital pharmacies using positive air pressure isolators. Annals of Occupational Hygiene, 57(3), 374–383.Google Scholar
  31. Kosjek, T., Perko, S., Žigon, D., & Heath, E. (2013). Fluorouracil in the environment: analysis, occurrence, degradation and transformation. Journal of Chromatography A, 1290, 62–72.CrossRefGoogle Scholar
  32. Krstey, S., Perunicić, B., & Vidacović, A. (2003). Work practice and some adverse health effects in nurses handling antineoplastic drugs. Medicina del Lavoro, 94(5), 432–439.Google Scholar
  33. Lee, S. G., Tkaczuk, M., Jankewicz, G., & Ambados, F. (2007). Surface contamination from cytotoxic chemotherapy following preparation and administration. Journal of Pharmacy Practice and Research, 37(4), 271–276.CrossRefGoogle Scholar
  34. Mason, H. J., Blair, S., Sams, C., Jones, K., Garfitt, S. J., Cuschieri, M. J., et al. (2005). Exposure to antineoplastic drugs in two UK hospital pharmacy units. Annals of Occupational Hygiene, 49(7), 603–610.Google Scholar
  35. McDevitt, J. J., Lees, P. S., & McDiarmid, M. A. (1993). Exposure of hospital pharmacists and nurses to antineoplastic agents. Journal of Occupational Medicine, 35(1), 57–60.Google Scholar
  36. McDiarmid, M. A., Rogers, B., & Oliver, M. S. (2014). Chromosomal effects of non-alkylating drug exposure in oncology personnel. Environmental and Molecular Mutagenesis, 55(4), 369–374.CrossRefGoogle Scholar
  37. Meijster, T., Fransman, W., Veldhof, R., & Kromhout, H. (2006). Exposure to antineoplastic drugs outside the hospital environment. Annals of Occupational Hygiene, 50(7), 657–664.Google Scholar
  38. Micoli, G., Turci, R., Arpellini, M., & Minoia, C. (2001). Determination of 5-fluorouracil in environmental samples by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography B, Biomedical Sciences and Applications, 750(1), 25–32.CrossRefGoogle Scholar
  39. Minoia, C., Turci, R., Sottani, C., Schiavi, A., Perbellini, L., Angeleri, S., et al. (1998). Application of high-performance liquid-chromatography tandem mass-spectrometry in the environmental and biological monitoring of health-care personnel occupationally exposed to cyclophosphamide and ifosfamide. Rapid Communications in Mass Spectrometry, 12(20), 1485–1493.CrossRefGoogle Scholar
  40. Naito, T., Osawa, T., Suzuki, N., Goto, T., Takada, A., Nakamichi, H., et al. (2012). Comparison of contamination levels on the exterior surfaces of vials containing platinum anticancer drugs in Japan. Biological and Pharmaceutical Bulletin, 35(11), 2043–2049.CrossRefGoogle Scholar
  41. Ng, L. M., & Jaffe, N. (1970). Possible hazards of handling antineoplastic drugs. Pediatrics, 46(4), 648–649.Google Scholar
  42. National Institute for Occupational Safety and Health (NIOSH). (2004). NIOSH alert: preventing occupational exposures to antineoplastic and other hazardous drugs in health care settings. No. 2004-165. Atlanta (GA): Department of Health and Human Services (US), Centers for Disease Control and Prevention. Ressource document. www.cdc.gov/niosh/docs/2004-165/. Accessed 20 June 2016.
  43. National Institute for Occupational Safety and Health (NIOSH). (2014). NIOSH list of antineoplastic drugs and other hazardous drugs in healthcare settings. No. 2014-138. Atlanta (GA): Department of Health and Human Services (US), Centers for Disease Control and Prevention. Resource document. www.cdc.gov/niosh/docs/2014-138/. Accessed 20 June 2016.
  44. Nussbaumer, S., Fleury-Souverain, S., Antinori, P., Sadeghipour, F., Hochstrasser, D. F., Bonnabry, P., et al. (2010). Simultaneous quantification of ten cytotoxic drugs by a validated LC–ESI–MS/MS method. Analytical and Bioanalytical Chemistry, 398(7–8), 3033–3042.CrossRefGoogle Scholar
  45. Nussbaumer, S., Geiser, L., Sadeghipour, F., Hochstrasser, D., Bonnabry, P., Veuthey, J. L., et al. (2012). Wipe sampling procedure coupled to LC-MS/MS analysis for the simultaneous determination of 10 cytotoxic drugs on different surfaces. Analytical and Bioanalytical Chemistry, 402(8), 2499–2509.CrossRefGoogle Scholar
  46. Nygren, O., Gustavsson, B., Strom, L., & Friberg, A. (2002). Cisplatin contamination observed on the outside of drug vials. Annals of Occupational Hygiene, 46(6), 555–557.Google Scholar
  47. Occupational Safety and Health Administration (OSHA), United States Department of Labor. (1999). Controlling occupational exposure to hazardous drugs. OSHA technical manual, section VI, chapter 2. Resource document. https://www.osha.gov/dts/osta/otm/otm_vi/otm_vi_2.html. Accessed 20 June 2016.
  48. Pethran, A., Schierl, R., Hauff, K., Grimm, C. H., Boos, K. S., & Nowak, D. (2003). Uptake of antineoplastic agents in pharmacy and hospital personnel. Part I: monitoring of urinary concentrations. International Archives of Occupational and Environmental Health, 76, 5–10.Google Scholar
  49. Randolph, S. A. (2012). (NIOSH) hazardous drugs in health care settings—recognition and control. Workplace Health and Safety, 60(9), 412.Google Scholar
  50. Rombaldi, F., Cassini, C., Salvador, M., Saffi, J., & Erdtmann, B. (2009). Occupational risk assessment of genotoxicity and oxidative stress in workers handling anti-neoplastic drugs during a working week. Mutagenesis, 24(2), 143–148.CrossRefGoogle Scholar
  51. Sabatini, L., Barbieri, A., Tosi, M., & Violante, F. S. (2005). A new high-performance liquid chromatographic/electrospray ionization tandem mass spectrometric method for the simultaneous determination of cyclophosphamide, methotrexate and 5-fluorouracil as markers of surface contamination for occupational exposure monitoring. Journal of Mass Spectrometry, 40(5), 669–674.CrossRefGoogle Scholar
  52. Schierl, R., Böhlandt, A., & Nowak, D. (2009). Guidance values for surfaces monitoring of antineoplasic drugs in German pharmacies. Annals of Occupational Hygiene, 53(7), 703–711.Google Scholar
  53. Schierl, R., Herwig, A., Pfaller, A., Groebmair, S., & Fischer, E. (2010). Surface contamination of antineoplastic drug vials: comparison of unprotected and protected vials. American Journal of Health-System Pharmacy, 67(6), 428–429.CrossRefGoogle Scholar
  54. Schierl, R., Masini, C., Groeneveld, S., Fischer, E., Böhlandt, A., Rosini, V., et al. (2016). Environmental contamination by cyclophosphamide preparation: comparison of conventional manual production in biological safety cabinet and robot-assisted production by APOTECAchemo. Journal of Oncology Pharmacy Practice, 22(1), 37–45.CrossRefGoogle Scholar
  55. Schmaus, G., Schierl, R., & Funck, S. (2002). Monitoring surface contamination by antineoplastic drugs using gas chromatography-mass spectrometry and voltammetry. American Journal of Health-System Pharmacy, 59(10), 956–961.Google Scholar
  56. Schreiber, C., Radon, K., Pethran, A., Schierl, R., Hauff, K., & Grimm, C. H. (2003). Uptake of antineoplastic agents in pharmacy personnel. Part II study of work-related risk factors. International Archives of Occupational and Environmental Health, 76(1), 11–16.Google Scholar
  57. Sessink, P. J., Boer, K. A., Scheefhals, A. P., Anzion, R. B., & Bos, R. P. (1992). Occupational exposure to antineoplastic agents at several departments in a hospital. Environmental contamination and excretion of cyclophosphamide and ifosfamide in urine of exposed workers. International Archives of Occupational and Environmental Health, 64(2), 105–112.CrossRefGoogle Scholar
  58. Sessink, P. J., Connor, T. H., Jorgenson, J. A., & Tyler, T. G. (2011). Reduction in surface contamination with antineoplastic drugs in 22 hospital pharmacies in the US following implementation of a closed-system drug transfer device. Journal of Oncology Pharmacy Practice, 17(1), 39–48.CrossRefGoogle Scholar
  59. Sessink, P. J., Leclercq, G. M., Wouters, D. M., Halbardier, L., Hammad, C., & Kassoul, N. (2015). Environmental contamination, product contamination and workers exposure using a robotic system for antineoplastic drug preparation. Journal of Oncology Pharmacy Practice, 21(2), 118–127.CrossRefGoogle Scholar
  60. Siderov, J., Kirsa, S., & McLauchlan, R. (2010). Reducing workplace cytotoxic surface contamination using a closed-system drug transfer device. Journal of Oncology Pharmacy Practice, 16(1), 19–25.CrossRefGoogle Scholar
  61. Smith, J. P., Sammons, D. L., Pretty, J. R., Kurtz, K. S., Robertson, S. A., DeBord, D. G., et al. (2016). Detection of 5-fluorouracil surface contamination in near real time. Journal of Oncology Pharmacy Practice, 22(1), 60–67.CrossRefGoogle Scholar
  62. Sottani, C., Turci, R., Micoli, G., Fiorentino, M. L., & Minoia, C. (2000). Rapid and sensitive determination of paclitaxel (Taxol) in environmental samples by high- performance liquid chromatography tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 14(10), 930–935.CrossRefGoogle Scholar
  63. Sottani, C., Turci, R., Schierl, R., Gaggeri, R., Barbieri, A., Violante, F. S., et al. (2007). Simultaneous determination of gemcitabine, taxol, cyclophosphamide and ifosfamide in wipe samples by high-performance liquid chromatography/tandem mass spectrometry: protocol of validation and uncertainty of measurement. Rapid Communications in Mass Spectrometry, 21(7), 1289–1296.CrossRefGoogle Scholar
  64. Sottani, C., Porro, B., Comelli, M., Imbriani, M., & Minoia, C. (2010). An analysis to study trends in occupational exposure to antineoplastic drugs among health care workers. Journal of Chromatography B, Biomedical Sciences and Applications, 878(27), 2593–2605.Google Scholar
  65. Stücker, I., Mandereau, L., & Hémon, D. (1993). Relationship between birthweight and occupational exposure to cytostatic drugs during or before pregnancy. Scandinavian Journal of Work, Environment & Health, 19(3), 148–153.CrossRefGoogle Scholar
  66. Tkaczuk, M., Lee, S. G., Jankewicz, G., & Ambados, F. (2010). Surface contamination of cytotoxic drug 5-fluorouracil (5-FU) and decontamination. Journal of Health, Safety and Environment, 26(2), 171–181.Google Scholar
  67. Touzin, K., Bussières, J. F., Langlois, E., Lefebvre, M., & Gallant, C. (2008). Cyclophosphamide contamination observed on the external surfaces of drug vials and the efficacy of cleaning on vial contamination. Annals of Occupational Hygiene, 52(8), 765–771.Google Scholar
  68. Tuerk, J., Kiffmeyer, T. K., Hadtstein, C., Heinemann, A., Hahn, M., Stuetzer, M., et al. (2011). Development and validation of an LC-MS/MS procedure for environmental monitoring of eight cytostatic drugs in pharmacies. International Journal of Environmental Analytical Chemistry, 91(12), 1178–1190.CrossRefGoogle Scholar
  69. Turci, R., & Minoia, C. (2006). Residual hazard assessment related to handling of antineoplastic drugs: safety system evolution and quality assurance of analytical measurement. Annals of the New York Academy of Sciences, 1076, 649–656.CrossRefGoogle Scholar
  70. Turci, R., Micoli, G., & Minoia, C. (2000). Determination of methotrexate in environmental samples by solid phase extraction and high performance liquid chromatography: ultraviolet or tandem mass spectrometry detection? Rapid Communications in Mass Spectrometry, 14(8), 685–691.CrossRefGoogle Scholar
  71. Turci, R., Sottani, C., Spagnoli, G., & Minoia, C. (2003). Biological and environmental monitoring of hospital personnel exposed to antineoplastic agents: a review of analytical methods. Journal of Chromatography B, Biomedical Sciences and Applications, 789(2), 169–209.Google Scholar
  72. USP <797> (2004). Guidebook to pharmaceutical compounding—sterile preparations. In: The United States pharmacopeia [28th rev]—the national formulary (23rd edn) (pp 2461–2477). Rockville (MD): United States Pharmacopeial Convention.Google Scholar
  73. Valanis, B. G., Vollmer, W. M., Labuhn, K. T., & Glass, A. G. (1993). Association of antineoplastic drug handling with acute adverse effects in pharmacy personnel. American Journal of Hospital Pharmacy, 50(3), 455–462.Google Scholar
  74. Valanis, B. G., Vollmer, W. M., & Steele, P. (1999). Occupational exposure to antineoplastic agents: self-reported miscarriages and stillbirths among nurses and pharmacists. Journal of Occupational and Environmental Medicine, 41(8), 632–638.CrossRefGoogle Scholar
  75. Wick, C., Slawson, M. H., Jorgenson, J. A., & Tyler, L. S. (2003). Using a closed-system protective device to reduce personnel exposure to antineoplastic agents. American Journal of Health-System Pharmacy, 60(22), 2314–2320.Google Scholar
  76. Working Committee on the Safe Handling of Hazardous Drugs. (2008). Prevention guide: safe handling of hazardous drugs. Montréal (QC): Association paritaire pour la santé et la sécurité au travail du secteur des affaires sociales. Ressource document. www.irsst.qc.ca/media/documents/PubIRSST/CG-002.pdf. Accessed 20 june 2016.
  77. World Health Organization Regional Office for Europe (2002) Good practice in occupational health services: a contribution to workplace health. Resource document. http://www.euro.who.int/__data/assets/pdf_file/0007/115486/E77650.pdf. Accessed 11 November 2016.
  78. Yuki, M., Sekine, S., Takase, K., Ishida, T., & Sessink, P. J. (2013). Exposure of family members to antineoplastic drugs via excreta of treated patients. Journal of Oncology Pharmacy Practice, 19(3), 208–217.CrossRefGoogle Scholar
  79. Yuki, M., Ishida, T., & Sekine, S. (2015). Secondary exposure of family members to cyclophosphamide after chemotherapy of outpatients with cancer: a pilot study. Oncology Nursing Forum, 42(6), 665–671.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Petit Marie
    • 1
  • Curti Christophe
    • 1
    • 2
  • Roche Manon
    • 2
    • 3
  • Montana Marc
    • 2
    • 4
  • Bornet Charleric
    • 5
  • Vanelle Patrice
    • 1
    • 2
  1. 1.Assistance Publique-Hôpitaux de Marseille (AP-HM), Service Central de la Qualité et de l’Information Pharmaceutiques (SCQIP)Hôpital de la ConceptionMarseilleFrance
  2. 2.CNRS, ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de PharmacieAix-Marseille UniversitéMarseille Cedex 05France
  3. 3.Assistance Publique-Hôpitaux de Marseille (AP-HM)Service Central des Opérations Pharmaceutiques (SCOP)MarseilleFrance
  4. 4.Assistance Publique-Hôpitaux de Marseille (AP-HM), OncopharmaHôpital NordMarseille Cedex 20France
  5. 5.Assistance Publique-Hôpitaux de Marseille (AP-HM), Pharmacie Usage Intérieur Hôpital de la ConceptionHôpital de la ConceptionMarseilleFrance

Personalised recommendations