Advertisement

Assessment of multi-contaminant exposure in a cancer treatment center: a 2-year monitoring of molds, mycotoxins, endotoxins, and glucans in bioaerosols

  • Natacha Heutte
  • Véronique André
  • Catherine Dubos Arvis
  • Valérie Bouchart
  • Françoise Lemarié
  • Patrick Legendre
  • Edwige Votier
  • Marie-Yolande Louis
  • Stéphane Madelaine
  • Virginie Séguin
  • Stéphanie Gente
  • Philippe Vérité
  • David Garon
Article

Abstract

Indoor air quality in health care facilities is a major public health concern, particularly for immunocompromised patients who may be exposed to microbiological contaminants such as molds, mycotoxins, endotoxins, and (1,3)-ß-D-glucans. Over 2 years, bioaerosols were collected on a monthly basis in a cancer treatment center (Centre F. Baclesse, Normandy, France), characterized from areas where there was no any particular air treatment. Results showed the complexity of mycoflora in bioaerosols with more than 100 fungal species identified. A list of major strains in hospital environments could be put forward due to the frequency, the concentration level, and/or the capacity to produce mycotoxins in vitro: Aspergillus fumigatus, Aspergillus melleus, Aspergillus niger, Aspergillus versicolor, Cladosporium herbarum, Purpureocillium lilacinum, and Penicillium brevicompactum. The mean levels of viable airborne fungal particles were less than 30.530 CFU per m3 of air and were correlated to the total number of 0.30 to 20 μm particles. Seasonal variations were observed with fungal particle peaks during the summer and autumn. Statistical analysis showed that airborne fungal particle levels depended on the relative humidity level which could be a useful indicator of fungal contamination. Finally, the exposure to airborne mycotoxins was very low (only 3 positive samples), and no mutagenic activity was found in bioaerosols. Nevertheless, some fungal strains such as Aspergillus versicolor or Penicillium brevicompactum showed toxigenic potential in vitro.

Keywords

Air monitoring Bioaerosols Cancer treatment center Mold Mycotoxins 

Notes

Acknowledgements

We would like to thank Miss Anne El Kaddoumi for her technical assistance. We would also like to acknowledge Margaret Dearing for improving the English of the manuscript.

Compliance with ethical standards

Financial supports

The study has been supported by the Program Primequal and financed by the Agence de l’Environnement et de la Maîtrise de l’Energie (ADEME).

We would like to thank the staff of the Centre François Baclesse.

References

  1. Anderson, K., Morris, G., Kennedy, H., Croall, J., Michie, J., Richardson, M. D., & Gibson, B. (1996). Aspergillosis in immunocompromised paediatric patients: associations with building hygiene, design, and indoor air. Thorax, 51(3), 256–261.CrossRefGoogle Scholar
  2. Anninou, N., Chatzaki, E., Papachristou, F., Pitiakoudis, M., & Simopoulos, C. (2014). Mycotoxins’ activity at toxic and sub-toxic concentrations: differential cytotoxic and genotoxic effects of single and combined administration of sterigmatocystin, ochratoxin a and citrinin on the hepatocellular cancer cell line Hep3B. International Journal of Environmental Research and Public Health, 11(2), 1855–1872.CrossRefGoogle Scholar
  3. Antas, P. R. Z., Brito, M. M. S., Peixoto, É., Ponte, C. G. G., & Borba, C. M. (2012). Neglected and emerging fungal infections: review of hyalohyphomycosis by Paecilomyces lilacinus focusing in disease burden, in vitro antifungal susceptibility and management. Microbes and Infection, 14(1), 1–8.CrossRefGoogle Scholar
  4. Augustowska, M., & Dutkiewicz, J. (2006). Variability of airborne microflora in a hospital ward within a period of one year. Annals of Agricultural and Environmental Medicine, 13(1), 99–106.Google Scholar
  5. Bartman, C. D., Doerfler, D. L., Bird, B. A., Remaley, A. T., Peace, J. N., & Campbell, I. M. (1981). Mycophenolic acid production by Penicillium brevicompactum on solid media. Applied and Environmental Microbiology, 41(3), 729–736.Google Scholar
  6. Bellanger, A.-P., Million, L., Rognon, B., Roussel, S., Botterel, F., Bretagne, S., & Reboux, G. (2011). Variable beta-glucans production by different states of Eurotium amstelodami explains differences in inflammatory responses in airway cells. APMIS, 119(9), 605–610.CrossRefGoogle Scholar
  7. Bloom, E., Grimsley, L. F., Pehrson, C., Lewis, J., & Larsson, L. (2009). Molds and mycotoxins in dust from water–damaged homes in New Orleans after hurricane Katrina. Indoor Air, 19, 153–158.CrossRefGoogle Scholar
  8. Booth, C. (1966). The genus Fusarium. Kew: Commonwealth Mycological Institute.Google Scholar
  9. Caggiano, G., Napoli, C., Coretti, C., Lovero, G., Scarafile, G., De Giglio, O., & Montagna, M. T. (2014). Mold contamination in a controlled hospital environment: a 3-years surveillance in southern Italy. BMC Infectious Diseases, 14(595), 1–5.Google Scholar
  10. Checkoway, H., Lundin, J. I., Costello, S., Ray, R., Li, W., Eisen, E. A., Astrakianakis, G., et al. (2014). Possible pro-carcinogenic association of endotoxin on lung cancer among shanghai women textile workers. British Journal of Cancer, 111(3), 603–607.CrossRefGoogle Scholar
  11. Chowdhary, A., Kathuria, S., Xu, J., & Meis, J. F. (2013). Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathogens, 9(10), e1003633.CrossRefGoogle Scholar
  12. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867.CrossRefGoogle Scholar
  13. Curtis, L., Lieberman, A., Stark, M., Rea, W., & Vetter, M. (2004). Adverse health effects of indoor molds. Journal of Nutritional and Environmental Medicine, 14(3), 261–274.CrossRefGoogle Scholar
  14. Despot, D. J., Kocsubé, S., Bencsik, O., Kecskeméti, A., Szekeres, A., Vágvölgyi, C., Varga, J., & Klarić, M. S. (2016). Species diversity and cytotoxic potency of airborne sterigmatocystin-producing Aspergilli from the section versicolores. Science of the Total Environment, 562, 296–304.CrossRefGoogle Scholar
  15. Domsch, K. H., Gams, W., & Anderson, T. H. (1980). Compendium of soil fungi. London: Academic Press.Google Scholar
  16. Douwes, J., Thorne, P., Pearce, N., & Heederik, D. (2003). Bioaerosol health effects and exposure assessment: progress and prospects. The Annals of Occupational Hygiene, 47(3), 187–200.Google Scholar
  17. Duquenne, P., Marchand, G., & Duchaine, C. (2013). Measurement of endotoxins in bioaerosols at workplace: a critical review of literature and a standardization issue. Annals of Occupational Hygiene, 57(2), 137–172.Google Scholar
  18. Enoch, D. A., Ludlam, H. A., & Brown, N. M. (2006). Invasive fungal infections: a review of epidemiology and management options. Journal of Medical Microbiology, 55(7), 809–818.CrossRefGoogle Scholar
  19. European Committee for Standardization (CEN) (2003). Workplace atmosphere-determination of airborne endotoxins (standard no. 14031:2003). Brussels: CEN.Google Scholar
  20. Falvey, D. G., & Streifel, A. J. (2007). Ten-year air sample analysis of Aspergillus prevalence in a university hospital. Journal of Hospital Infection, 67(1), 35–41.CrossRefGoogle Scholar
  21. Fischer, G., & Dott, W. (2003). Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Archives of Microbiology, 179(2), 75–82.CrossRefGoogle Scholar
  22. Fischer, G., Müller, T., Schwalbe, R., Ostrowski, R., & Dott, W. (2000). Species-specific profiles of mycotoxins produced in cultures and associated with conidia of airborne fungi derived from biowaste. International Journal of Hygiene and Environmental Health, 203(2), 105–116.CrossRefGoogle Scholar
  23. Frisvad, J. C., Smedsgaard, J., Samson, R. A., Larsen, T. O., & Thrane, U. (2007). Fumonisin B2 production by Aspergillus niger. Journal of Agricultural and Food Chemistry, 55(23), 9727–9732.CrossRefGoogle Scholar
  24. Gniadek, A., Macura, A. B., & Górkiewicz, M. (2011). Cytotoxicity of Aspergillus fungi isolated from hospital environment. Polish Journal of Microbiology, 60(1), 59–63.Google Scholar
  25. Hao, Z.-f., Ao, J.-h., Hao, F., Yang, R.-y., Zhu, H., & Zhang, J. (2011). Environment surveillance of filamentous fungi in two tertiary care hospitals in China. Chinese Medical Journal, 124(13), 1970–1975.Google Scholar
  26. Holker, J. S. E., O’Brien, E., & Simpson, T. J. (1983). The structures of some metabolites of Penicillium diversum: α-and β-diversonolic esters. Journal of the Chemical Society, 1, 1365.Google Scholar
  27. Hospenthal, D. R., Kwon-Chung, K. J., & Bennett, J. E. (1998). Concentrations of airborne Aspergillus compared to the incidence of invasive aspergillosis: lack of correlation. Medical Mycology, 36(3), 165–168.CrossRefGoogle Scholar
  28. Howard, S. J. (2014). Multi-resistant aspergillosis due to cryptic species. Mycopathologia, 178(5–6), 435–439.CrossRefGoogle Scholar
  29. Klich, M. A. (2002). Identification of common aspergillus species. Utrecht: Centraalbureau voor Schimmelcultures.Google Scholar
  30. Korkalainen, M., Täubel, M., Naarala, J., Kirjavainen, P., Koistinen, A., Hyvärinen, A., Komulainen, H., & Viluksela, M. (2016). Synergistic proinflammatory interactions of microbial toxins and structural components characteristic to moisture-damaged buildings. Indoor Air. doi: 10.1111/ina.12282.Google Scholar
  31. Kozajda, A. I., Jeżak, K., Sowiak, M., Gutarowska, B., & Szadkowska-Stańczyk, I. (2015). Assessment of exposure to fungi in the heavily contaminated work environment (a solid waste sorting plant) based on the ergosterol analysis. International Journal of Occupational Medicine and Environmental Health, 28(5), 813–821.CrossRefGoogle Scholar
  32. Krivobok, S., Olivier, P., Marzin, D. R., Seigle-Murandi, F., & Steiman, R. (1987). Study of the genotoxic potential of 17 mycotoxins with the SOS chromotest. Mutagenesis, 2(6), 433–439.CrossRefGoogle Scholar
  33. Lau, A. P. S., Lee, A. K. Y., Chan, C. K., & Fang, M. (2006). Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmospheric Environment, 40(2), 249–259.CrossRefGoogle Scholar
  34. Ławniczek-Wałczyk, A., & Górny, R. L. (2010). Endotoxins and β-glucans as markers of microbiological contamination--characteristics, detection, and environmental exposure. Annals of Agricultural and Environmental Medicine, 17(2), 193–208.Google Scholar
  35. Lewis, R. E., Wiederhold, N. P., Lionakis, M. S., Prince, R. A., & Kontoyiannis, D. P. (2005). Frequency and species distribution of gliotoxin-producing Aspergillus isolates recovered from patients at a tertiary-care cancer center. Journal of Clinical Microbiology, 43(12), 6120–6122.CrossRefGoogle Scholar
  36. Madsen, A. M. (2006). Airborne endotoxin in different background environments and seasons. Annals of Agricultural and Environmental Medicine, 13(1), 81–86.Google Scholar
  37. Mueller-Anneling, L., Avol, E., Peters, J. M., & Thorne, P. S. (2004). Ambient endotoxin concentrations in PM10 from southern California. Environmental Health Perspectives, 112(5), 583–588.CrossRefGoogle Scholar
  38. Nucci, M., & Marr, K. A. (2005). Emerging Fungal Diseases. Clinical Infectious Diseases, 41(4), 521–526.CrossRefGoogle Scholar
  39. Ortiz, G., Yagüe, G., Segovia, M., & Catalán, V. (2009). A study of air microbe levels in different areas of a hospital. Current Microbiology, 59(1), 53–58.CrossRefGoogle Scholar
  40. Park, J.-H., Cox-Ganser, J., Rao, C., & Kreiss, K. (2006). Fungal and endotoxin measurements in dust associated with respiratory symptoms in a water-damaged office building. Indoor Air, 16(3), 192–203.CrossRefGoogle Scholar
  41. Park, D.-U., Yeom, J.-K., Lee, W. J., & Lee, K.-M. (2013). Assessment of the levels of airborne bacteria, gram-negative bacteria, and fungi in hospital lobbies. International Journal of Environmental Research and Public Health, 10(2), 541–555.CrossRefGoogle Scholar
  42. Peláez, T., Muñoz, P., Guinea, J., Valerio, M., Giannella, M., Klaassen, C. H. W., & Bouza, E. (2012). Outbreak of invasive aspergillosis after major heart surgery caused by spores in the air of the intensive care unit. Clinical Infection Diseases, 54(3), e24–e31.CrossRefGoogle Scholar
  43. Perdelli, F., Cristina, M. L., Sartini, M., Spagnolo, A. M., Dallera, M., Ottria, G., Lombardi, R., Grimaldi, M., & Orlando, P. (2006). Fungal contamination in hospital environments. Infection Control & Hospital Epidemiology, 27(1), 44–47.CrossRefGoogle Scholar
  44. Pitt, J. I. (1979). The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. London: Academic Press.Google Scholar
  45. Pitt, J. I. (2000). Toxigenic fungi and mycotoxins. British Medical Bulletin, 56(1), 184–192.CrossRefGoogle Scholar
  46. Pottier, D., Andre, V., Rioult, J.-P., Bourreau, A., Duhamel, C., Kientz Bouchart, V., Richard, E., Guibert, M., Verite, P., & Garon, D. (2014). Airborne molds and mycotoxins in Serpula lacrymans-damaged homes. Atmospheric Pollution Research, 5(2), 325–334.CrossRefGoogle Scholar
  47. Reponen, T., Seo, S. C., Grimsley, F., Lee, T., Crawford, C., & Grinshpun, S. A. (2007). Fungal fragments in moldy houses: a field study in homes in New Orleans and southern Ohio. Atmospheric Environment, 41(37), 8140–8149.CrossRefGoogle Scholar
  48. Rylander, R., & Holt, P. G. (1998). (1-- > 3)-beta-D-glucan and endotoxin modulate immune response to inhaled allergen. Mediators of Inflammation, 7(2), 105–110.CrossRefGoogle Scholar
  49. Samson, R. A., & Frisvad, J. C. (2004). Penicillium subgenus Penicillium: new taxonomic schemes, mycotoxins and others extrolites. Utrecht: Centraalbureau voor Schimmelcultures.Google Scholar
  50. Samson, J. I., & Pitt, R. A. (2000). Integration of modern taxonomic methods for Penicillium and aspergillus classification. Amsterdam: Harwood Academic Publishers.Google Scholar
  51. Samson, R. A., Hoekstra, E. S., Frisvad, J. C., & Filtenborg, O. (2002). Introduction to food and airborne fungi. Utrecht: Centraalbureau voor Schimmelcultures.Google Scholar
  52. Sautour, M., Sixt, N., Dalle, F., L’ollivier, C., Fourquenet, V., Calinon, C., Paul, K., Valvin, S., Maurel, A., Aho, S., Couillault, S., Cachia, C., Vagner, O., Cuisenier, B., Caillot, D., & Bonnin, A. (2009). Profiles and seasonal distribution of airborne fungi in indoor and outdoor environments at a French hospital. Science of the Total Environment, 40, 3766–3771.CrossRefGoogle Scholar
  53. Séguin, V., Gente, S., Heutte, N., Vérité, P., Kientz-Bouchart, V., Sage, L., Goux, D., & Garon, D. (2014). First report of mycophenolic acid production by Eurotium repens isolated from agricultural and indoor environments. World Mycotoxin Journal, 7(3), 321–328.CrossRefGoogle Scholar
  54. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press.Google Scholar
  55. Thorn, J., & Rylander, R. (1998). Airways inflammation and glucan in a rowhouse area. American Journal of Respiratory and Critical Care Medicine, 157(6), 1798–1803.CrossRefGoogle Scholar
  56. Tormo-Molina, R., Gonzalo-Garijo, M. A., Fernández-Rodríguez, S., & Silva-Palacios, I. (2012). Monitoring the occurrence of indoor fungi in a hospital. Revista Iberoamericana de Micología, 29(4), 227–234.CrossRefGoogle Scholar
  57. Twaroch, T. E., Curin, M., Valenta, R., & Swoboda, I. (2015). Mold allergens in respiratory allergy: from structure to therapy. Allergy, Asthma & Immunology Research, 7(3), 205–220.CrossRefGoogle Scholar
  58. Visagie, C. M., Hirooka, Y., Tanney, J. B., Whitfield, E., Mwange, K., Meijer, M., Amend, A. S., Seifert, K. A., & Samson, R. A. (2014). Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Studies in Mycology, 78, 63–139.CrossRefGoogle Scholar
  59. Von Arx, J. A. (1981). The genus of fungi sporulating in pure culture. Vaduz: Cramer.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Natacha Heutte
    • 1
    • 2
  • Véronique André
    • 3
  • Catherine Dubos Arvis
    • 2
  • Valérie Bouchart
    • 4
  • Françoise Lemarié
    • 2
  • Patrick Legendre
    • 4
  • Edwige Votier
    • 3
  • Marie-Yolande Louis
    • 2
  • Stéphane Madelaine
    • 2
  • Virginie Séguin
    • 3
  • Stéphanie Gente
    • 3
  • Philippe Vérité
    • 3
  • David Garon
    • 3
  1. 1.CETAPS EA 3832Normandie Université, UNIROUENMont Saint Aignan cedexFrance
  2. 2.Centre de Lutte Contre le Cancer François BaclesseCaen cedex 05France
  3. 3.ABTE EA 4651Normandie Université, UNICAEN, UNIROUENCaenFrance
  4. 4.Laboratoire Labéo Frank DuncombeCaenFrance

Personalised recommendations