Area-based fuzzy membership forest cover comparison between MODIS NPP and Forest Inventory and Analysis (FIA) across eastern U.S. forest

  • Youngsang KwonEmail author
  • Bradley Wayne Baker


This research assessed the accuracy of the moderate resolution imaging spectroradiometer’s (MODIS) land cover classification of softwood and hardwood using a fuzzy-based approach for 31 easternmost states in the U.S. Our main objective was to quantitatively evaluate spatially explicit land cover classifications of MODIS net primary product (NPP) scheme using the USDA Forest Service’s (FS) field-based, tree-specific Forest Inventory Analysis (FIA). We used a grid of 648 km2 hexagons as base mapping units and interpreted our results at the USDA FS level IV ecological regions. Forest area was calculated for both MODIS and FIA and were found to be strongly correlated (Pearson’s r = 0.875, p < 0.01), which suggests the two classifications are comparable. Area-based fuzzy memberships of softwood and hardwood forest were determined for both MODIS and FIA for each hexagon. We used cross-entropy (H c) to evaluate the accuracy of the MODIS classification. Our results determined that the accuracy of MODIS forest cover classification was not uniform for all ecological regions. Tree species importance values (IV) and Shannon’s diversity index (H s) were calculated to examine species abundance and heterogeneity, which may partially explain discrepancies between MODIS and FIA classifications. The greatest misclassifications were due to (1) MODIS underestimating softwood forest cover and (2) MODIS confusing forest cover with other land covers such as grassland, cropland, or woody savanna. Our results provide a guideline for users to understand the degree of uncertainty of MODIS forest cover classifications in the eastern USA.


Fuzzy classification MODIS FIA Field data Cross-entropy 

Supplementary material

10661_2016_5745_MOESM1_ESM.docx (27 kb)
ESM 1 (DOCX 27 kb)


  1. Bechtold, W. A., & P., P. L. (Eds.) (2005). The enhanced forest inventory and analysis program-national sampling design and estimation procedures. Asheville: USDA Forest Service.Google Scholar
  2. Begon, M., Harper, J., & Townsend, C. (1996). Ecology: individuals, populations and communities (3rd ed.). Oxford: Black-well Science.CrossRefGoogle Scholar
  3. Bonan, G. B., Oleson, K. W., Vertenstein, M., Levis, S., Zeng, X., Dai, Y., et al. (2002). The land surface climatology of the community land model coupled to the NCAR community climate model. Journal of Climate, 15(22), 3123–3149. doi: 10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2.CrossRefGoogle Scholar
  4. Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., et al. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, 104(47), 18866–18870.CrossRefGoogle Scholar
  5. Coops, N. C., Waring, R. H., & Landsberg, J. J. (1998). Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity. Forest Ecology and Management, 1041–3, 113–127, doi: 10.1016/S0378-1127(97)00248-X.
  6. Foody, G. M. (1995). Cross-entropy for the evaluation of the accuracy of a fuzzy land cover classification with fuzzy ground data. ISPRS Journal of Photogrammetry and Remote Sensing, 50(5), 2–12.CrossRefGoogle Scholar
  7. Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., et al. (2010). MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1), 168–182. doi: 10.1016/j.rse.2009.08.016.CrossRefGoogle Scholar
  8. Hansen, M. C., Defries, R. S., Townshend, J. R. G., & Sohlberg, R. (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21(6–7), 1331–1364. doi: 10.1080/014311600210209.CrossRefGoogle Scholar
  9. Hao, G., & Gen-Suo, J. (2012). Spatial and quantitative comparison of satellite-derived land cover products over China. Atmospheric and Oceanic Science Letters, 5(5), 426–434.CrossRefGoogle Scholar
  10. Hill, R. A., Granica, K., Smith, G. M., & Schardt, M. (2007). Representation of an alpine treeline ecotone in SPOT 5 HRG data. Remote Sensing of Environment, 110(4), 458–467. doi: 10.1016/j.rse.2006.11.031.CrossRefGoogle Scholar
  11. Keenan, R. J. (2015). Climate change impacts and adaptation in forest management: a review. Annals of Forest Science, 72(2), 145–167.CrossRefGoogle Scholar
  12. Kwon, Y., & Larsen, C. P. S. (2012). Use of pixel- and plot-scale screening variables to validate MODIS GPP predictions with Forest Inventory and Analysis NPP measures across the eastern USA. International Journal of Remote Sensing, 33(19), 6122–6148. doi: 10.1080/01431161.2012.680615.CrossRefGoogle Scholar
  13. Kwon, Y., & Larsen, C. P. S. (2013). An assessment of the optimal scale for monitoring of MODIS and FIA NPP across the eastern USA. Environmental Monitoring and Assessment, 185(9), 7263–7277. doi: 10.1007/s10661-013-3099-1.CrossRefGoogle Scholar
  14. McRoberts, R. E., Holden, G. R., Nelson, M. D., Liknes, G. C., & Gormanson, D. D. (2005). Using satellite imagery as ancillary data for increasing the precision of estimates for the Forest inventory and analysis program of the USDA Forest Service. Canadian Journal of Forest Research, 35(12), 2968–2980. doi: 10.1139/x05-222.CrossRefGoogle Scholar
  15. Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9(3), 747–766. doi: 10.2307/2401901.CrossRefGoogle Scholar
  16. Muukkonen, P., & Heiskanen, J. (2007). Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: a possibility to verify carbon inventories. Remote Sensing of Environment, 107(4), 617–624.CrossRefGoogle Scholar
  17. Myneni, R. B., Ramakrishna, R., Nemani, R., & Running, S. W. (1997). Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Transactions on Geoscience and Remote Sensing, 35(6), 1380–1393. doi: 10.1109/36.649788.CrossRefGoogle Scholar
  18. Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625), 1560–1563. doi: 10.1126/science.1082750.CrossRefGoogle Scholar
  19. Okeke, F., & Karnieli, A. (2006). Methods for fuzzy classification and accuracy assessment of historical aerial photographs for vegetation change analyses. Part I: algorithm development. International Journal of Remote Sensing, 27(1), 153–176. doi: 10.1080/01431160500166540.CrossRefGoogle Scholar
  20. Olofsson, P., Stehman, S. V., Woodcock, C. E., Sulla-Menashe, D., Sibley, A. M., Newell, J. D., et al. (2012). A global land-cover validation data set, part I: fundamental design principles. International Journal of Remote Sensing, 33(18), 5768–5788. doi: 10.1080/01431161.2012.674230.CrossRefGoogle Scholar
  21. Omernik, M. J. (2004). Perspectives on the nature and definition of ecological regions. Environmental Management, 34(1), S27–S38. doi: 10.1007/s00267-003-5197-2.CrossRefGoogle Scholar
  22. Riemann, R., Wilson, B. T., Lister, A., & Parks, S. (2010). An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data. Remote Sensing of Environment, 114, 2337–2352.CrossRefGoogle Scholar
  23. Reyer, C. P., Rammig, A., Brouwers, N., & Langerwisch, F. (2015). Forest resilience, tipping points and global change processes. Journal of Ecology, 103(1), 1–4.CrossRefGoogle Scholar
  24. Running, S. W., Justice, C. O., Salomonson, V., Hall, D., Barker, J., Kaufmann, Y. J., et al. (1994). Terrestrial remote sensing science and algorithms planned for EOS/MODIS. International Journal of Remote Sensing, 15(17), 3587–3620. doi: 10.1080/01431169408954346.CrossRefGoogle Scholar
  25. Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004). A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 54(6), 547–560. doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2.CrossRefGoogle Scholar
  26. Schaphoff, S., Reyer, C. P., Schepaschenko, D., Gerten, D., & Shvidenko, A. (2016). Tamm review: observed and projected climate change impacts on Russia’s forests and its carbon balance. Forest Ecology and Management, 361, 432–444.CrossRefGoogle Scholar
  27. Sha, Z., Bai, Y., Xie, Y., Yu, M., & Zhang, L. (2008). Using a hybrid fuzzy classifier (HFC) to map typical grassland vegetation in Xilin River Basin, Inner Mongolia, China. International Journal of Remote Sensing, 29(8), 2317–2337.CrossRefGoogle Scholar
  28. Stehman, S. V., Olofsson, P., Woodcock, C. E., Herold, M., & Friedl, M. A. (2012). A global land-cover validation data set, II: augmenting a stratified sampling design to estimate accuracy by region and land-cover class. International Journal of Remote Sensing, 33(22), 6975–6993. doi: 10.1080/01431161.2012.695092.CrossRefGoogle Scholar
  29. Townshend, J. R. G., & Justice, C. O. (2002). Towards operational monitoring of terrestrial systems by moderate-resolution remote sensing. Remote Sensing of Environment, 83(1–2), 351–359. doi: 10.1016/S0034-4257(02)00082-2.CrossRefGoogle Scholar
  30. White, D., Kimerling, J. A., & Overton, S. W. (1992). Cartographic and geometric components of a global sampling design for environmental monitoring. Cartography and geographic information systems, 19(1), 5–22.CrossRefGoogle Scholar
  31. Woodall, C. W., Oswalt, C. M., Westfall, J. A., Perry, C. H., Nelson, M. D., & Finley, A. O. (2009). An indicator of tree migration in forests of the eastern United States. Forest Ecology and Management, 257(5), 1434–1444. doi: 10.1016/j.foreco.2008.12.013.CrossRefGoogle Scholar
  32. Wright, C. K., & Wimberly, M. C. (2013). Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 4134–4139. doi: 10.1073/pnas.1215404110.CrossRefGoogle Scholar
  33. Zhang, J., & Foody, G. (1998). A fuzzy classification of sub-urban land cover from remotely sensed imagery. International Journal of Remote Sensing, 19(14), 2721–2738.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of MemphisMemphisUSA

Personalised recommendations