Input, behaviour and distribution of multiple elements in abiotic matrices along a transect within the Okavango Delta, northern Botswana

  • Jörg Schaller
  • Jonas Schoelynck
  • Mike Murray-Hudson
  • Patrick J. Frings
  • Dimitri van Pelt
  • Tilo Hegewald
  • Keotshephile Mosimane
  • Mangaliso Gondwe
  • Piotr Wolski
  • Patrick Meire
  • Eric Struyf


Wetlands fed by rivers can be a sink for elements depending on elemental concentrations, wetland hydrology, geochemistry, vegetation and climate. In the case of the Okavango Delta, northern Botswana, the outflow discharge is a small fraction (2–5%) of the inflow. This has strong potential consequences for the Delta, as it strongly affects element cycling and storage within the Delta. We estimated the inputs, behaviour and distribution of multiple elements along a longitudinal transect within the Okavango Delta, to show potential effects of retention mechanisms of different elements. High annual element input is rather attributed to discharge than to the concentration within the water, which is generally extremely low. We observed minimal enrichment of the elements within the water pathway along the transect from inflow to outlets, implying that element output is negligible. For most elements, we observed a high correlation between storage and sediment organic matter content. The organic matter content within the sediments was higher in the vegetated sediments than in non-vegetated sediments (factor ∼ 10), and a similar trend was found for most elements. In conclusion, organic matter dominated in sediments from vegetated plots and thus plays an important role in retaining the elements within the sediments of the Delta. This finding has major implications for e.g. planning constructed wetlands for water purification or element retention especially in areas with high evapotranspiration.


Aquatic ecosystem Carbon pools Element accumulation Organic rich sediments Wetland Macrophytes 



We would like to thank several funding agencies for their funding contributions: University of Botswana Office of Research and Development, EU Marie Curie Program (Hobits), National Geographic Explorer Grant, the Swedish National Science Foundation (VR) and the Knut and Alice Wallenberg Foundation. This research was carried out under Permit EWT 8/36/4 XVI(6) from the Government of Botswana. We would like to thank BELSPO for funding the project SOGLO. J.S. is a postdoctoral fellow of FWO (project no. 12H8616N) and thanks the FWO for a travel grant.

Supplementary material

10661_2016_5696_MOESM1_ESM.doc (7.2 mb)
ESM 1 (DOC 7385 kb)


  1. Alberic, P., Viollier, E., Jezequel, D., Grosbois, C., & Michard, G. (2000). Interactions between trace elements and dissolved organic matter in the stagnant anoxic deep layer of a meromictic lake. Limnology and Oceanography, 45, 1088–1096.CrossRefGoogle Scholar
  2. Bernal, B., & Mitsch, W. J. (2013). Carbon sequestration in freshwater wetlands in Costa Rica and Botswana. Biogeochemistry, 115, 77–93.CrossRefGoogle Scholar
  3. Borcard, D., Gillet, F., Legendre, P. 2011. Numerical ecology with R. Springer Science & Business Media.Google Scholar
  4. Borzone, G., Raggio, R., & Ferro, R. (1999). Thermochemistry and reactivity of rare earth metals. Physical Chemistry Chemical Physics, 1, 1487–1500.CrossRefGoogle Scholar
  5. Brackhage, C., Schaller, J., Bäucker, E., & Dudel, E. G. (2013). Silicon availability affects the stoichiometry and content of calcium and micro nutrients in the leaves of common reed. SILICON, 5, 199–204.CrossRefGoogle Scholar
  6. Christensen, J. B., Botma, J. J., & Christensen, T. H. (1999). Complexation of Cu and Pb by DOC in polluted groundwater: a comparison of experimental data and predictions by computer speciation models (WHAM and MINTEQA2). Water Research, 33, 3231–3238.CrossRefGoogle Scholar
  7. D’Souza, S. F., Sar, P., Kazy, S. K., & Kubal, B. S. (2006). Uranium sorption by Pseudomonas biomass immobilized in radiation polymerized polyacrylamide bio-beads. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 41, 487–500.CrossRefGoogle Scholar
  8. Davis, R., Beckett, P., & Wollan, E. (1978). Critical levels of twenty potentially toxic elements in young spring barley. Plant and Soil, 49, 395–408.CrossRefGoogle Scholar
  9. Diamond, L. W., & Akinfiev, N. N. (2003). Solubility of CO2 in water from −1.5 to 100 degrees C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling. Fluid Phase Equilibria, 208, 265–290.CrossRefGoogle Scholar
  10. DIN-EN-13346 (2001). Bestimmung von Spurenelementen und Phosphor, Extraktionsverfahren mit Königswasser (p. 20). Berlin: Deutsches Institut für Normung.Google Scholar
  11. DIN-EN-ISO-17294-2 (2004). Wasserbeschaffenheit—Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS) - Teil 2: Bestimmung von 62 Elementen (ISO 17294-2:2003), Deutsche Fassung EN ISO 17294–2:2004 (p. 24). Berlin: Deutsches Institut für Normung.Google Scholar
  12. Ellery, W. N., McCarthy, T. S., & Smith, N. D. (2003). Vegetation, hydrology, and sedimentation patterns on the major distributary system of the Okavango Fan, Botswana. Wetlands, 23, 357–375.CrossRefGoogle Scholar
  13. Flemming, H.-C., Neu, T. R., & Wozniak, D. J. (2007). The EPS matrix: the “house of biofilm cells”. Journal of Bacteriology, 189, 7945–7947.CrossRefGoogle Scholar
  14. Gessner, M. O., Chauvet, E., & Dobson, M. (1999). A perspective on leaf litter breakdown in streams. Oikos, 85, 377–384.CrossRefGoogle Scholar
  15. Gordeev, V. V., & Sidorov, I. S. (1993). Concentrations of major elements and their outflow into the Laptev Sea by the Lena river. Marine Chemistry, 43, 33–45.CrossRefGoogle Scholar
  16. Gumbricht, T., McCarthy, J., & McCarthy, T. (2004). Channels, wetlands and islands in the Okavango Delta, Botswana, and their relation to hydrological and sedimentological processes. Earth Surface Processes and Landforms, 29, 15–29.CrossRefGoogle Scholar
  17. Gumbricht, T., McCarthy, T., McCarthy, J., Roy, D., Frost, P., & Wessels, K. (2002). Remote sensing to detect sub-surface peat fires and peat fire scars in the Okavango Delta, Botswana. South African Journal of Science, 98, 351–358.Google Scholar
  18. Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.CrossRefGoogle Scholar
  19. Jackson, D. A. (1993). Stopping rules in principal components-analysis—a comparison of heuristic and statistical approaches. Ecology, 74, 2204–2214.CrossRefGoogle Scholar
  20. Lin, Z. (1997). Mobilization and retention of heavy metals in mill-tailings from Garpenberg sulfide mines, Sweden. Science of the Total Environment, 198, 13–31.CrossRefGoogle Scholar
  21. Mackay, A. W., Davidson, T., Wolski, P., Mazebedi, R., Masamba, W. R. L., Huntsman-Mapila, P., & Todd, M. (2011). Spatial and seasonal variability in surface water chemistry in the Okavango Delta, Botswana: a multivariate approach. Wetlands, 31, 815–829.CrossRefGoogle Scholar
  22. McCarthy, J. M., Gumbricht, T., McCarthy, T., Frost, P., Wessels, K., & Seidel, F. (2003). Flooding patterns of the Okavango wetland in Botswana between 1972 and 2000. Ambio, 32, 453–457.CrossRefGoogle Scholar
  23. McCarthy, T., Stanistreet, I., & Cairncross, B. (1991). The sedimentary dynamics of active fluvial channels on the Okavango fan, Botswana. Sedimentology, 38, 471–487.CrossRefGoogle Scholar
  24. McCarthy, T. S., Barry, M., Bloem, A., Ellery, W. N., Heister, H., Merry, C. L., Ruther, H., & Sternberg, H. (1997). The gradient of the Okavango fan, Botswana, and its sedimentological and tectonic implications. Journal of African Earth Sciences, 24, 65–78.CrossRefGoogle Scholar
  25. McCarthy, T. S., Humphries, M. S., Mahomed, I., Le Roux, P., & Verhagen, B. T. (2012). Island forming processes in the Okavango Delta, Botswana. Geomorphology, 179, 249–257.CrossRefGoogle Scholar
  26. Mendez-Ramirez, M., & Hernandez, M. A. A. (2012). Distribution of Fe, Zn, Pb, Cu, Cd and As from mining wastes and wastewater along a transect of Taxco river in Guerrero, Mexico. Revista Mexicana De Ciencias Geologicas, 29, 450–462.Google Scholar
  27. Milzow, C., Kgotlhang, L., Bauer-Gottwein, P., Meier, P., & Kinzelbach, W. (2009). Regional review: the hydrology of the Okavango Delta, Botswana—processes, data and modelling. Hydrogeology Journal, 17, 1297–1328.CrossRefGoogle Scholar
  28. Mladenov, N., Wolski, P., Hettiarachchi, G. M., Murray-Hudson, M., Enriquez, H., Damaraju, S., Galkaduwa, M. B., McKnight, D. M., & Masamba, W. (2014). Abiotic and biotic factors influencing the mobility of arsenic in groundwater of a through-flow island in the Okavango Delta, Botswana. Journal of Hydrology, 518, 326–341.CrossRefGoogle Scholar
  29. Neal, C., Whitehead, P. G., Jeffery, H., & Neal, M. (2005). The water quality of the River Carnon, west Cornwall, November 1992 to March 1994: the impacts of Wheal Jane discharges. Science of the Total Environment, 338, 23–39.CrossRefGoogle Scholar
  30. Ramberg, L., Lindholm, M., Hessen, D. O., Murray-Hudson, M., Bonyongo, C., Heinl, M., Masamba, W., VanderPost, C., & Wolski, P. (2010). Aquatic ecosystem responses to fire and flood size in the Okavango Delta: observations from the seasonal floodplains. Wetlands Ecology and Management, 18, 587–595.CrossRefGoogle Scholar
  31. Ramberg, L., & Wolski, P. (2008). Growing islands and sinking solutes: processes maintaining the endorheic Okavango Delta as a freshwater system. Plant Ecology, 196, 215–231.CrossRefGoogle Scholar
  32. Ramberg, L., Wolski, P., & Krah, M. (2006). Water balance and infiltration in a seasonal floodplain in the Okavango Delta, Botswana. Wetlands, 26, 677–690.CrossRefGoogle Scholar
  33. Schaller, J., Brackhage, C., Mkandawire, M., & Dudel, G. (2011). Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: a review. Science of the Total Environment, 409, 4891–4898.CrossRefGoogle Scholar
  34. Schaller, J., Headley, T., Prigent, S., & Breuer, R. (2014). Potential mining of lithium, beryllium and strontium from oilfield wastewater after enrichment in constructed wetlands and ponds. Science of the Total Environment, 493, 910–913.CrossRefGoogle Scholar
  35. Schaller, J., & Machill, S. (2012). Invertebrates control metal/metalloid sequestration and the quality of DOC/DON released during litter decay in slightly acidic environments. Environmental Science and Pollution Research, 19, 3942–3949.CrossRefGoogle Scholar
  36. Schaller, J., Vymazal, J., & Brackhage, C. (2013). Retention of resources (metals, metalloids and rare earth elements) by autochthonously/allochthonously dominated wetlands: a review. Ecological Engineering, 53, 106–114.CrossRefGoogle Scholar
  37. Schaller, J., Weiske, A., Mkandawire, M., & Dudel, E. G. (2010). Invertebrates control metals and arsenic sequestration as ecosystem engineers. Chemosphere, 79, 169–173.CrossRefGoogle Scholar
  38. Schlesinger, W.H., Bernhardt, E.S., 2013. Biogeochemistry: an analysis of global change. Access Online via Elsevier.Google Scholar
  39. Schoelynck, J., Bal, K., Verschoren, V., Penning, E., Struyf, E., Bouma, T., Meire, D., Meire, P., & Temmerman, S. (2014). Different morphology of Nuphar lutea in two contrasting aquatic environments and its effect on ecosystem engineering. Earth Surface Processes and Landforms, 39, 2100–2108.CrossRefGoogle Scholar
  40. Schoelynck, J., de Groote, T., Bal, K., Vandenbruwaene, W., Meire, P., & Temmerman, S. (2012). Self-organised patchiness and scale-dependent bio-geomorphic feedbacks in aquatic river vegetation. Ecography, 35, 760–768.CrossRefGoogle Scholar
  41. Sridhar, K. R., Barlocher, F., Wennrich, R., Krauss, G. J., & Krauss, G. (2008). Fungal biomass and diversity in sediments and on leaf litter in heavy metal contaminated waters of Central Germany. Fundamental and Applied Limnology, 171, 63–74.CrossRefGoogle Scholar
  42. Struyf, E., Mosimane, K., Van Pelt, D., Murray-Hudson, M., Meire, P., Frings, P., Wolski, P., Schaller, J., Gondwe, M.J., Schoelynck, J., 2015. The role of vegetation in the Okavango Delta silica sink. Wetlands, 1–11.Google Scholar
  43. Tyler, G. (2004). Rare earth elements in soil and plant systems—a review. Plant and Soil, 267, 191–206.CrossRefGoogle Scholar
  44. Valitutto, R. S., Sella, S. M., Silva, E. V., Pereira, R. G. A., & Miekeley, N. (2007). Accumulation of metals in macrophytes from water reservoirs of a power supply plant, Rio de Janeiro State, Brazil. Water Air and Soil Pollution, 178, 89–102.CrossRefGoogle Scholar
  45. Wallmann, K., Aloisi, G., Haeckel, M., Tishchenko, P., Pavlova, G., Greinert, J., Kutterolf, S., & Eisenhauer, A. (2008). Silicate weathering in anoxic marine sediments. Geochimica et Cosmochimica Acta, 72, 2895–2918.CrossRefGoogle Scholar
  46. Wolski, P., & Murray-Hudson, M. (2006). Recent changes in flooding in the Xudum distributary of the Okavango Delta and Lake Ngami, Botswana. South African Journal of Science, 102, 173–176.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jörg Schaller
    • 1
    • 2
  • Jonas Schoelynck
    • 3
  • Mike Murray-Hudson
    • 4
  • Patrick J. Frings
    • 5
  • Dimitri van Pelt
    • 3
  • Tilo Hegewald
    • 6
  • Keotshephile Mosimane
    • 4
  • Mangaliso Gondwe
    • 4
  • Piotr Wolski
    • 4
    • 7
  • Patrick Meire
    • 3
  • Eric Struyf
    • 3
  1. 1.Institute of General Ecology and Environmental ProtectionTechnische Universität DresdenDresdenGermany
  2. 2.Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER)University BayreuthBayreuthGermany
  3. 3.Department of BiologyUniversity of AntwerpWilrijkBelgium
  4. 4.Okavango Research InstituteUniversity of BotswanaMaunBotswana
  5. 5.Department of GeologyLund UniversityLundSweden
  6. 6.State Reservoir Administration of Saxony, Research Laboratory PaulsdorfDippoldiswaldeGermany
  7. 7.Climate Systems Analysis GroupUniversity of Cape TownCape TownSouth Africa

Personalised recommendations