Skip to main content

Advertisement

Log in

Changing agricultural practices: potential consequences to aquatic organisms

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Agricultural practices pose threats to biotic diversity in freshwater systems with increasing use of glyphosate-based herbicides for weed control and animal waste for soil amendment becoming common in many regions. Over the past two decades, these particular agricultural trends have corresponded with marked declines in populations of fish and mussel species in the Upper Conasauga River watershed in Georgia/Tennessee, USA. To investigate the potential role of agriculture in the population declines, surface waters and sediments throughout the basin were tested for toxicity and analyzed for glyphosate, metals, nutrients, and steroid hormones. Assessments of chronic toxicity with Ceriodaphnia dubia and Hyalella azteca indicated that few water or sediment samples were harmful and metal concentrations were generally below impairment levels. Glyphosate was not observed in surface waters, although its primary degradation product, aminomethyl phosphonic acid (AMPA), was detected in 77% of the samples (mean = 509 μg/L, n = 99) and one or both compounds were measured in most sediment samples. Waterborne AMPA concentrations supported an inference that surfactants associated with glyphosate may be present at levels sufficient to affect early life stages of mussels. Nutrient enrichment of surface waters was widespread with nitrate (mean = 0.7 mg NO3-N/L, n = 179) and phosphorus (mean = 275 μg/L, n = 179) exceeding levels associated with eutrophication. Hormone concentrations in sediments were often above those shown to cause endocrine disruption in fish and appear to reflect the widespread application of poultry litter and manure. Observed species declines may be at least partially due to hormones, although excess nutrients and herbicide surfactants may also be implicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA (American Public Health Association), American Water Works Association, and Water Environment Federation (1992). Standard methods for the examination of water and wastewater (18th ed.). Washington: APHA.

    Google Scholar 

  • Argentina, J. E., Freeman, M. C., & Freeman, B. J. (2010). The response of stream fish to local and reach-scale variation in the occurrence of a benthic aquatic macrophyte. Freshwater Biology, 55, 643–653.

    Article  Google Scholar 

  • Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe. doi:10.1186/s12302-016-0070-0.

    Google Scholar 

  • Blazer, V. S., Iwanowicz, L. R., Henderson, H., Mazik, P. M., Jenkins, J. A., Alvarez, D. A., et al. (2012). Reproductive endocrine disruption in smallmouth bass (Micropterus dolomieu) in the Potomac River basin: spatial and temporal comparisons of biological effects. Environmental Monitoring and Assessment, 184, 4309–4334.

    Article  CAS  Google Scholar 

  • Bradley, P. M., Barber, L. B., Chapelle, F. H., Gray, J. L., Kolpin, D. W., & McMahon, P. B. (2009). Biodegradation of 17β-E2, E1 and T in stream sediments. Environmental Science and Technology, 43, 1902–1910.

    Article  CAS  Google Scholar 

  • Bringolf, R. B., Cope, W. G., Mosher, S., Barnhart, M. C., & Shea, D. (2007). Acute and chronic toxicity of glyphosate compounds to glochidia and juveniles of Lampsilis siliquoidea (Unionidae). Environmental Toxicology and Chemistry, 26, 2094–2100.

    Article  CAS  Google Scholar 

  • Camargo, J. A., Alonso, A., & Salamanca, A. (2005). Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere, 58, 1255–1267.

    Article  CAS  Google Scholar 

  • Chen, T. C., Chen, T. S., Yeh, K. J., Lin, Y. C., Chao, H. R., & Yeh, Y. L. (2012). Sorption of estrogens estrone, 17β-estradiol, estriol, 17p-ethinylestradiol, and diethylstilbestrol on sediment affected by different origins. Journal of Environmental Science and Health, Part A, 47, 1768–1775.

    Article  CAS  Google Scholar 

  • Ciocan, C. M., Cubero-Leon, E., Puinean, A. M., Hill, E. M., Minier, C., Osada, M., et al. (2010). Effects of estrogen exposure in mussels, Mytilus edulis, at different stages of gametogenesis. Environmental Pollution, 158, 2977–2984.

    Article  CAS  Google Scholar 

  • Coupe, R. H., Kalkhoff, S. J., Capel, P. D., & Gregoire, C. (2012). Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Management Science, 68, 16–30.

    Article  CAS  Google Scholar 

  • Coyner, D. F., Spalding, M. G., & Forrester, D. J. (2003). Influence of treated sewage on infections of Eustrongylides ingnotus (Nematoda: Dioctophymatoidea) in eastern mosquitofish (Gambusia holbrooki) in an urban watershed. Comparative Parasitology, 70, 205–210.

    Article  Google Scholar 

  • Douda, K. (2010). Effects of nitrate nitrogen pollution on Central European unionid bivalves revealed by distributional data and acute toxicity testing. Aquatic Conservation: Marine and Freshwater Ecosystems, 20, 189–197.

    Article  Google Scholar 

  • Duke, S. O., & Powles, S. B. (2008). Glyphosate: a once-in-a-century herbicide. Pest Management Science, 64, 319–325.

    Article  CAS  Google Scholar 

  • Duong, C. N., Ra, J. S., Schlenk, D., Kim, S. D., Choi, H. K., & Kim, S. D. (2010). Sorption of estrogens onto different fractions of sediment and its effect on vitellogenin expression in male Japanese medaka. Archives of Environmental Contamination and Toxicology, 59, 147–156.

    Article  CAS  Google Scholar 

  • Filipkowska, A., & Lubecki, L. (2016). Endocrine disruptors in blue mussels and sediments from the Gulf of Gdańsk (southern Baltic). Environmental Science and Pollution Research International, 14, 13864–13876.

    Article  Google Scholar 

  • Freeman, M. C., Irwin, E. R., Burkhead, N. M., Freeman, B. J., & Bart Jr., H. L. (2005). Status and conservation of the fish fauna of the Alabama River system. In J. N. Rinne, R. M. Hughes, & R. Calamusso (Eds.), Historical changes in large river fish assemblages of the Americas (pp 557–585). Bethesda: American Fisheries Society.

    Google Scholar 

  • Fuzzen, M. L. M., Bennett, C. J., Tetreault, G. R., & Servos, M. R. (2015). Severe intersex is predictive of poor fertilization success in populations of rainbow darter (Etheostoma caeruleum). Aquatic Toxicology, 160, 106–116.

    Article  CAS  Google Scholar 

  • Gagné, F., Marcogliese, D. J., Blaise, C., & Gendron, A. D. (2001). Occurrence of compounds estrogenic to freshwater mussels in surface waters in an urban area. Environmental Toxicology, 16, 260–268.

    Article  Google Scholar 

  • Gagné, F., André, C., Cejka, P., Hausler, R., & Fournier, M. (2011). Evidence of neuroendocrine disruption in freshwater mussels exposed to municipal wastewaters. Science of the Total Environment, 409, 3711–3718.

    Article  Google Scholar 

  • Georgia County Guide (GCG) (2013). http://www.countyguide.uga.edu. Accessed 10 Mar 2015.

  • Giesy, J. P., Dobson, S., & Solomon, K. R. (2000). Ecotoxicological risk assessment for Roundup® herbicide. Reviews of Environmental Contamination and Toxicology, 167, 35–120.

    CAS  Google Scholar 

  • Grund, S., Higly, E., Schonenberger, R., Giesy, J. P., Braunbeck, T., Hecker, M., et al. (2011). The endocrine disrupting potential of sediments from the Upper Danube River (Germany) as revealed by in vitro bioassays and chemical analysis. Environmental Science and Pollution Research, 18, 445–460.

    Article  Google Scholar 

  • Hamlin, H. J., Moore, C. B., Edwards, T. M., Larkin, I. L. V., Boggs, A., High, W. J., et al. (2008). Nitrate-induced elevations in circulating sex steroid concentrations in female Siberian sturgeon (Acipenser baeri) in commercial aquaculture. Aquaculture, 281, 118–125.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water, Water-Supply Paper 2254. Washington: U.S. Geological Survey.

    Google Scholar 

  • Ingersoll, C. G., McDonald, D. D., Wang, N., Crane, J. L., Field, L. J., Haverland, P. S., et al. (2001). Prediction of sediment toxicity using consensus-based freshwater sediment quality guidelines. Archives of Environmental Contamination and Toxicology, 41, 8–21.

    Article  CAS  Google Scholar 

  • Jeffries, M. K. S., Conoan, N. H., Cox, M. B., Sangster, J. L., Balsiger, H. A., & Bridges, A. A. (2011). The anti-estrogenic activity of sediments from agriculturally intense watersheds: assessment using in vivo and in vitro assays. Aquatic Toxicology, 105, 189–198.

    Article  Google Scholar 

  • Jobling, S., Coey, S., Whitmore, J. G., Kime, D. E., Van Look, K. J., McAllister, et al. (2002). Wild intersex roach (Rutilus rutilus) have reduced fertility. Biology of Reproduction, 67, 515–524.

    Article  CAS  Google Scholar 

  • Johnson, P. D., Evans, R. R. 2000. A contemporary and historical database of freshwater mollusks in the Conasauga Basin. Report to USGS—Species at Risk Program no. 98HQAG-2154.

  • Kidd, K. A., Blanchfield, P. J., Mills, K. H., Palace, V. P., Evans, R. E., Lazorchak, J. M., et al. (2007). Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Science, 104, 8897–8901.

    Article  CAS  Google Scholar 

  • Lasier, P. J., & Urich, M. L. (2014). A simple control for sediment-toxicity exposures using the amphipod, Hyalella azteca. Bulletin of Environmental Contamination and Toxicology, 93, 263–267.

    Article  CAS  Google Scholar 

  • Lasier, P. J., Winger, P. V., & Hardin, I. R. (2006). Effects of hardness and alkalinity in culture and test waters on reproduction of Ceriodaphnia dubia. Environmental Toxicology and Chemistry, 25, 2781–2786.

    Article  CAS  Google Scholar 

  • Lee, G. F., & Jones-Lee, A. (2009). Assessing the water quality impacts of phosphorus in runoff from agricultural lands. In W. L. Hall Jr. & W. P. Robarge (Eds.), Environmental impact of fertilizer on soil and water (pp 207–219). Washington: American Chemical Society.

    Google Scholar 

  • Lei, B., Huang, S., Zhou, Y., Wang, D., & Wang, Z. (2009). Levels of six estrogens in water and sediment from three rivers in Tianjin area, China. Chemosphere, 76, 36–42.

    Article  CAS  Google Scholar 

  • Levine, S. L., Von Merey, G., Minderhout, T., Manson, P., & Sutton, P. (2015). Aminomethylphosphonic acid (AMPA) has low chronic toxicity to Daphnia magna and Pimephales promelas. Environmental Toxicology and Chemistry, 34, 1382–1389.

    Article  CAS  Google Scholar 

  • Luo, Q., Adams, P., Lu, J., Cabrera, M., & Huang, Q. (2013). Influence of poultry litter land application on the concentrations of estrogens in water and sediment within a watershed. Environmental Science: Processes & Impacts, 15, 1383–1390.

    CAS  Google Scholar 

  • Mashtare, M. L., Lee, L. S., Nies, L. F., & Turco, R. F. (2013). Transformation of 17p-estradiol, 17β-estradiol, and estrone in sediments under nitrate- and sulfate-reducing conditions. Environmental Science and Technology, 47, 7178–7185.

    CAS  Google Scholar 

  • Mesnage, R., Berneay, B., & Séralini, G. E. (2012). Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology, 313, 122–128.

    Article  Google Scholar 

  • Miles, C. J., Wallace, L. R., & Moye, H. A. (1986). Determination of glyphosate herbicide and (aminomethyl)phosphonic acid in natural waters by liquid chromatography using pre-column fluorogenic labeling with 9-fluorenylmethyl chloroformate. Association of Official Analytical Chemists Journal, 69, 458–461.

    CAS  Google Scholar 

  • Miller, W. P., & Miller, D. M. (1987). A micro-pipette method for soil mechanical analysis. Communications in Soil Science and Plant Analysis, 18, 1–15.

    Article  CAS  Google Scholar 

  • National Chicken Council (NCC) (2015). U.S. broiler production. http://www.nationalchickencouncil.org/about-the-industry/statistics/u-s-broiler-production/. Accessed 21 Jan 2015.

  • Natural Resources Conservation Service (NRCS). (1995). Animal manure management. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/wi/technical/cp/cta/?cid=nrcs143_014211. Accessed 16 Dec 2014.

  • Peck, M., Gibson, R. W., Kortenkamp, A., & Hill, E. M. (2004). Sediments are major sinks of steroidal estrogens in two United Kingdom rivers. Environmental Toxicology and Chemistry, 23, 945–952.

    Article  CAS  Google Scholar 

  • Peruzzo, P. J., Porta, A. A., & Ronco, A. E. (2008). Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environmental Pollution, 156, 61–66.

    Article  CAS  Google Scholar 

  • Quinn, B., Gagné, F., Costello, M., McKenzie, C., Wilson, J., & Mothersill, C. (2004). The endocrine disrupting effect of municipal effluent on the zebra mussel (Dreissena polymorpha). Aquatic Toxicology, 66, 279–292.

    Article  CAS  Google Scholar 

  • Raman, D. R., Williams, E. L., Layton, A. C., Burns, R. T., Easter, J. P., Daugherty, A. S., et al. (2004). Estrogen content of dairy and swine wastes. Environmental Science and Technology, 38, 3567–3573.

    Article  CAS  Google Scholar 

  • Rempel, M. A., Wang, Y., Armstrong, J., & Schlenk, D. (2008). Uptake of estradiol from sediment by hornyhead turbot (Pleuronichthys verticalis) and effects on oxidative DNA damage in male gonads. Marine Environmental Research, 66, 111–112.

    Article  CAS  Google Scholar 

  • Rosemond, A. D., Benstead, J. P., Bumpers, P. M., Gulis, V., Kominoski, J. S., Manning, D. W. P., et al. (2015). Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science, 347, 1142–1145.

    Article  CAS  Google Scholar 

  • Sackett, D. A., Pow, C. L., Rubino, M. J., Aday, D. D., Cope, W. C., Kullman, S., et al. (2015). Sources of endocrine disrupting compounds in North Carolina waterways: a geographic information systems approach. Environmental Toxicology and Chemistry, 34, 437–445.

    Article  CAS  Google Scholar 

  • Sangster, J. L., Zhang, Y., Hernandez, R., Garcia, Y. A., Sivils, J. C., Cox, M. B., et al. (2014). Bioavailability and fate of sediment-associated trenbolone and estradiol in aquatic systems. Science of the Total Environment, 496C, 576–584.

    Article  Google Scholar 

  • Sellin, M. K., Snow, D. D., & Kolok, A. S. (2010). Reductions in hepatic vitellogenin and E receptor alpha expression by sediments from an agriculturally impacted waterway. Aquatic Toxicology, 96, 103–108.

    Article  CAS  Google Scholar 

  • Sharpe, A. J., & Nichols, E. G. (2006). Use of stable nitrogen isotopes and permeable membrane devices to study what factors influence freshwater mollusk survival in the UCR. Environmental Monitoring and Assessment, 132, 275–295.

    Article  Google Scholar 

  • Smith, M. E., Lazorchak, J. M., Herrin, L. E., Brewer-Swartz, S., & Thoeny, W. T. (1997). A reformulated, reconstituted water for testing the freshwater amphipod, Hyalella azteca. Environmental Toxicology and Chemistry, 16, 1229–1233.

    Article  CAS  Google Scholar 

  • Tsui, M. T. K., & Chu, L. M. (2004). Comparative toxicity of glyphosate-based herbicides: aqueous and sediment porewater exposures. Archives of Environmental Contamination and Toxicology, 46, 316–323.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1993). Method 300.0: determination of inorganic anions by ion chromatography. Cincinnati: US Environmental Protection Agency.

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1994). Method 200.8: determination of trace elements in waters and wastes by inductively coupled plasma – mass spectrometry, revision 5.4. Cincinnati: US Environmental Protection Agency.

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1996). Method 3052: microwave assisted acid digestion of siliceous and organically based matrices. Cincinnati: US Environmental Protection Agency.

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2000a). Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, 2nd ed., Washington, D.C. (Pub no. 600/R-99/064).

  • United States Environmental Protection Agency (USEPA) (2000b). ambient water quality criteria recommendations; information supporting the development of state and tribal nutrient criteria. rivers and streams in nutrient Ecoregion IX. Washington, D.C. (Pub no. 822/B/00/019).

  • United States Environmental Protection Agency (USEPA) (2002). Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, 4th ed. Washington, D.C. (Pub no. 821/R-02/013).

  • United States Environmental Protection Agency (USEPA) (2007). Method 1698: steroids and hormones in water, sediment, soils, and biosolids by HRGC/HRMS . Washington: US Environmental Protection Agency.EPA 821/R-08/003

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2008). Handbook for developing watershed plans to restore and protect our waters (400 pp). Collingdale, PA: Diane Publishing.

  • United States Environmental Protection Agency (USEPA) (2013a). Literature review of contaminants in livestock and poultry manure and implications for water quality. Washington, D.C. (Pub no. 820-R-13-002).

  • United States Environmental Protection Agency (USEPA) (2013b). Aquatic life ambient criteria for ammonia – freshwater. Washington, D.C. (Pub no. 822-R-13-001).

  • United States Geological Survey (USGS) (2015). Pesticide National Synthesis Project. http://water.usgs.gov/nawqa/pnsp/usage/maps/show_map.php?year=2011&map=GLYPHOSATE&hilo=H&disp=Glyphosate. Accessed 15 Jan 2015.

  • Urbatzka, R., van Cauwenberge, A., Maggioni, S., Viganò, L., Mandich, A., Benfenati, E., et al. (2007). Androgenic and antiandrogenic activities in water and sediment samples from the river Lambro, Italy, detected by yeast androgen screen and chemical analyses. Chemosphere, 67, 1080–1087.

    Article  CAS  Google Scholar 

  • Viganò, L. E., Benfenati, A., van Cauwenberge, J. K., Eidem, C., Erratico, A., Goksøyr, W., et al. (2008). Estrogenicity profile and estrogenic compounds determined in river sediments by chemical analysis, ELISA and yeast assays. Chemosphere, 73, 1078–1089.

    Article  Google Scholar 

  • Wallace, J. B., Eggert, S. L., Meyer, J. L., & Webster, J. R. (1997). Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science, 277, 102–104.

    Article  CAS  Google Scholar 

  • Wang, N., Besser, J. M., Buckler, D. R., Honegger, J. L., Ingersoll, C. G., Johnson, B. T., et al. (2005). Influence of sediment on the fate and toxicity of a polyethoxylated tallowamine surfactant system (MON 0818) in aquatic microcosm. Chemosphere, 59, 545–551.

    Article  CAS  Google Scholar 

  • Woodburn, A. T. (2000). Glyphosate: production, pricing and use worldwide. Pest Management Science, 56, 309–312.

    Article  CAS  Google Scholar 

  • Yonkos, L. T., Fisher, D. J., Van Veld, P. A., Kane, A. S., McGee, B. L., & Staver, K. W. (2010). Poultry litter-induced endocrine disruption in fathead minnow, sheepshead minnow, and mummichog laboratory exposures. Environmental Toxicology and Chemistry, 29, 2328–2340.

    Article  CAS  Google Scholar 

  • Zhang, X., Li, Q., Li, G., Wang, Z., & Yan, C. (2009). Levels of estrogenic compounds in Xiamen Bay sediment, China. Marine Pollution Bulletin, 58, 1210–1216.

    Article  CAS  Google Scholar 

  • Zumwalt, D. C., Dwyer, F. J., Greer, I. E., & Ingersoll, C. G. (1994). A water-renewal system that accurately delivers small volumes of water to exposure chambers. Environmental Toxicology and Chemistry, 13, 1311–1314.

    Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the United States Fish and Wildlife Service through the Georgia Ecological Services Office. Facilities were provided by the D. B. Warnell School of Forestry and Natural Resources, The University of Georgia. Use of trade, product, or firm names does not imply endorsement by the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Lasier.

Electronic supplementary material

ESM 1

(PDF 799 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasier, P.J., Urich, M.L., Hassan, S.M. et al. Changing agricultural practices: potential consequences to aquatic organisms. Environ Monit Assess 188, 672 (2016). https://doi.org/10.1007/s10661-016-5691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5691-7

Keywords

Navigation