Effects of anthropogenic fragmentation on primary productivity and soil carbon storage in temperate mountain grasslands

  • Emilia Ionela Cojoc
  • Carmen Postolache
  • Bogdan Olariu
  • Carl Beierkuhnlein


Habitat fragmentation is one of the most severe anthropogenic pressures exerted on ecosystem’s biodiversity. Empirical studies to date focused with an overriding interest on the effects of habitat loss or habitat fragmentation per se on species richness patterns detrimental to biogeochemical processes. To account for changes in ecosystem fluxes, we investigated how anthropogenic fragmentation affects primary productivity and carbon storage in temperate mountain grasslands. A field study was conducted to assess the influence of grassland isolation on soil carbon stocks, N availability, species biomass, and plant functional groups distribution. We tested the hypothesis that increased isolation of grassland, within the land cover, decreases soil carbon stocks, and available N nutrient as well as aboveground biomass. Soil carbon concentration decreased with isolation but increased near the forest edge. We found significant differences in aboveground biomass distribution and relative contribution of plant functional groups between isolation conditions. The magnitude of edge effect on carbon stocks, N availability, and primary productivity intensified with increasing isolation as a consequence of the additive influence of edges. Our study reveals that the potential creation of artificially isolated patches diminished primary productivity, N availability, and C stocks. However, in highly managed landscapes, grazing pressure is an additional factor that changes biomass and nutrients patterns. We emphasize that spatial configuration of the landscape has a major role in modulating ecological flows and ecosystem service supply, in addition to changes in species richness.


Patch isolation Edge effects Carbon storage Primary productivity Habitat fragmentation Mountain grassland 

Supplementary material

10661_2016_5667_MOESM1_ESM.docx (13 kb)
ESM 1(DOCX 13 kb)


  1. Addicott, J. F., Aho, J. M., Antolin, M. F., Padilla, D. K., Richardson, J. S., & Soluk, D. A. (1987). Ecological neighborhoods: scaling environmental patterns. Oikos, 49, 340–346.CrossRefGoogle Scholar
  2. Adler, P. B., Seabloom, E. W., Borer, E. T., Hillebrand, H., Hautier, Y., Hector, A., et al. (2011). Productivity is a poor predictor of plant species richness. Science, 333, 1750–1753.CrossRefGoogle Scholar
  3. Allen, V. G., Batello, C., Berretta, E. J., Hodgson, J., Kothmann, M., Li, X., McIvor, J., Milne, J., Morris, C., Peeters, A., Sanderson, M., & The Forage and Grazing Terminology (2011). An international terminology for grazing lands and grazing animals. Grass and Forage Science, 66, 2–28.CrossRefGoogle Scholar
  4. Amundson, R. (2001). The carbon budget in soils. Annual Review of Earth and Planetary Sciences, 29, 535–562.CrossRefGoogle Scholar
  5. Archer, S., Boutton, T. W., & Hibbard, K. A. (2001). Trees in grasslands: biogeochemical consequences of woody plant expansion. In E. D. Schulze, M. Heimann, S. Harrison, E. Holland, J. Lloyd, I. C. Prentice, & D. Schimel (Eds.), Global biogeochemical cycles in the climate system. San Diego: Academic Press.Google Scholar
  6. Baer, S. G., Church, J. M., Williard, K. W. J., & Groninger, J. W. (2006). Changes in intrasystem N cycling from N2-fixing shrub encroachment in grassland: multiple positive feedbacks. Agriculture, Ecosystems & Environment, 115, 174–182.CrossRefGoogle Scholar
  7. Bardgett, R. D., Wardle, D. A., & Yeates, G. W. (1998). Linking aboveground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 30, 1867–1878.CrossRefGoogle Scholar
  8. Bardgett, R. D., Bowman, W. D., Kaufmann, R., & Schmidt, S. K. (2005). A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20, 634–641.CrossRefGoogle Scholar
  9. Billings, S. A. (2006). Soil organic matter dynamics and land use change at a grassland/forest ecotone. Soil Biology and Biochemistry, 38, 2934–2943.CrossRefGoogle Scholar
  10. Bremner, J. M. (1965). Inorganic forms of nitrogen. In C. A. Black (Eds.), Methods of soil analysis (pp. 1179–1237), Part 2, Agronomy No. 9. Madison, Wisconsin: American Society of Agronomy.Google Scholar
  11. Cadenasso, M. L., Pickett, S. T. A., Weathers, K. C., & Jones, C. G. (2003). A framework for a theory of ecological boundaries. Bioscience, 53, 750–758.CrossRefGoogle Scholar
  12. Cantrell, R. S., & Cosner, C. (2001). Spatial heterogeneity and critical patch size: area effects via diffusion in closed environments. Journal of Theoretical Biology, 209, 161–171.CrossRefGoogle Scholar
  13. Ciais, P., Soussana, J. F., Vuichard, N., Luyssaert, S., Don, A., Janssens, I. A., Piao, S. L., Dechow, R., Lathière, J., Maignan, F., Wattenbach, M., Smith, P., Ammann, C., Freibauer, A., Schulze, E. D., & The CARBOEUROPE Synthesis Team (2010). The greenhouse gas balance of European grasslands. Biogeosciences Discuss., 7, 5997–6050.CrossRefGoogle Scholar
  14. Clements, F. E. (1897). Peculiar zonal formations of the Great Plains. Amer. Nat., 31, 968–970.CrossRefGoogle Scholar
  15. De Deyn, G. B., Cornelissen, J. H. C., & Bardgett, R. D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11, 516–531.CrossRefGoogle Scholar
  16. De Deyn, G. B., Quirk, H., Yi, Z., Oakley, S., Ostle, N. J., & Bardgett, R. D. (2009). Vegetation composition promotes carbon and nitrogen storage in model grassland communities of contrasting soil fertility. Journal of Ecology, 97, 864–875.CrossRefGoogle Scholar
  17. Donovan, T. M., Jones, P. W., Annand, E. M., & Thompson, F. R. (1997). Variation in local-scale edge effects: mechanisms and landscape context. Ecology, 78, 2064–2075.CrossRefGoogle Scholar
  18. Ewers, R. M., Thorpe, S., & Didham, R. K. (2007). Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology, 88, 96–106.CrossRefGoogle Scholar
  19. FAO-Unesco (1997). Soil Map of the World. ISRIC Wageningen. http://www.fao.org/fileadmin/user_upload/soils/docs/isricu_i9264_001.pdf. Accessed 10 Jan 2016.
  20. Fletcher, J. R. J., Ries, L., Battin, J., & Chalfoun, A. D. (2007). The role of habitat area and edge in fragmented landscapes: definitively distinct or inevitably intertwined? Canadian Journal of Zoology, 85, 1017–1030.CrossRefGoogle Scholar
  21. Fraser, L. H., Pither, J., Jentsch, A., Sternberg, M., Zobel, M., Askarizadeh, D., Bartha, S., Beierkuhnlein, C., et al. (2015). Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349, 302–305.CrossRefGoogle Scholar
  22. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R. D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M., & Clément, J.-C. (2013). Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology, 101, 47–57.CrossRefGoogle Scholar
  23. Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: a meta analysis. Global Change Biology, 8, 345–360.CrossRefGoogle Scholar
  24. Gustafson, E. J. (1998). Quantifying landscape spatial pattern: what is the state of the art? Ecosystems, 1, 143–156.CrossRefGoogle Scholar
  25. Haines-Young, R., & Potschin, M. (2010). The links between biodiversity, ecosystem services and human well-being. In D. Raffaelli & C. Frid (Eds.), Ecosystem ecology: a new synthesis. CUP, Cambridge: BES Ecological Reviews Series.Google Scholar
  26. Hardt, R. A., & Forman, R. T. T. (1989). Boundary form effects on woody colonization of reclaimed surface mines. Ecology, 70, 1252–1260.CrossRefGoogle Scholar
  27. Hättenschwiler, S., & Vitousek, P. M. (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology & Evolution, 15, 238–243.CrossRefGoogle Scholar
  28. Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M. C., Diemer, M., Dimitrakopoulos, P. G., Finn, J. A., Freitas, H., et al. (1999). Plant diversity and productivity experiments in European grasslands. Science, 286, 1123–1127.CrossRefGoogle Scholar
  29. Hibbard, K. A., Schimel, D. S., Archer, S., Ojima, D. S., & Parton, W. (2003). Grassland to woodland transitions: integrating changes in landscape structure and biogeochemistry. Ecological Applications, 13, 911–926.CrossRefGoogle Scholar
  30. Holt, R. D. (1985). Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theoretical Population Biology, 28, 181–208.CrossRefGoogle Scholar
  31. Hughes, R. F., Archer, S. R., Asner, G. P., Wessman, C. A., McMurtry, C., Nelson, J., & Ansley, R. J. (2006). Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna. Global Change Biology, 12, 1733–1747.CrossRefGoogle Scholar
  32. Jackson, R. B., Banner, J. L., Jobbágy, E. G., Pockman, W. T., & Wall, D. H. (2002). Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 418, 623–626.CrossRefGoogle Scholar
  33. Jagessar, R. C., & Sooknundun, L. (2011). Determination of nitrate anion in waste water from nine selected areas of coastal Guyana via a spectrophotometric method. International Journal of Research and Reviews in Applied Sciences, 7, 203–212.Google Scholar
  34. Keeney, D.R., Nelson D.W. (1987). Nitrogen-Inorganic Forms, sec. 33–3, Extraction of exchangeable ammonium, nitrate, and nitrite. In A. L. Page (Ed.), Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties. Madison, Wisconsin USA.Google Scholar
  35. Lagerström, A., Nilsson, M. C., Zackrisson, O., & Wardle, D. A. (2007). Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Functional Ecology, 21, 1027–1033.CrossRefGoogle Scholar
  36. Laurance, W. F., & Yensen, E. (1991). Predicting the impacts of edge effects in fragmented habitats. Biological Conservation, 55, 77–92.CrossRefGoogle Scholar
  37. Lefcheck, J.S., Byrnes, J.E.K., Isbell, F., Gamfeldt, L., Griffin, J.N., Eisenhauer, N., Hensel, M.J.S., Hector, A., Cardinale, B.J., Duffy, J.E. (2015). Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communication, 6. doi:10.1038/ncomms7936.Google Scholar
  38. Livingston, B. E. (1903). The distribution of the upland plant societies of Kent County, Michigan. Botanical Gazette, 35, 36–55.CrossRefGoogle Scholar
  39. Lu, M., Zhou, X. H., Luo, Y. Q., Yang, Y. H., Fang, C. M., Chen, J. K., & Li, B. (2011). Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agriculture, Ecosystems and Environment, 140, 234–244.CrossRefGoogle Scholar
  40. Malcolm, J. R. (1994). Edge effects in central Amazonian forest fragments. Ecology, 75, 2438–2445.CrossRefGoogle Scholar
  41. Mittelbach, G. G., Steiner, C. F., Scheiner, S. M., Gross, K. L., Reynolds, H. L., Waide, R. B., Willig, M. R., Dodson, S. I., & Gough, L. (2001). What is the observed relationship between species richness and productivity? Ecology, 82, 2381–2396.CrossRefGoogle Scholar
  42. Moorcroft, M. J., Davis, J., & Compton, R. G. (2001). Detection and determination of nitrate and nitrite: a review. Talanta, 54, 785–803.CrossRefGoogle Scholar
  43. Neff, J. C., Townsend, A. R., Gleixner, G., Lehman, S. J., Turnbull, J., & Bowman, W. D. (2002). Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature, 419, 915–917.CrossRefGoogle Scholar
  44. Öckinger, E., Lindborg, R., Sjödin, N. E., & Bommarco, R. (2012). Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography, 35, 259–267.CrossRefGoogle Scholar
  45. Pacala, S. W., Hurtt, G. C., Baker, D., Peylin, P., Houghton, R. A., Birdsey, R. A., Heath, L., et al. (2001). Consistent land- and atmosphere-based U.S. carbon sink estimates. Science, 292, 2316–2320.CrossRefGoogle Scholar
  46. Phillips, J. D. (1999). Edge effects in geomorphology. Physical Geography, 20, 53–66.Google Scholar
  47. Ries, L., Fletcher, R. J. J., Battin, J., & Sisk, T. D. (2004). Ecological responses to habitat edges: mechanisms, models, and variability explained. Annual Review of Ecology, Evolution, and Systematics, 35, 491–522.CrossRefGoogle Scholar
  48. Ries, L., & Sisk, T. D. (2004). A predictive model of edge effects. Ecology, 85, 2917–2926.CrossRefGoogle Scholar
  49. Roscher, C., Schumacher, J., Baade, J., Wilcke, W., Gleixner, G., Weisser, W. W., Schmid, B., & Schulze, E. D. (2004). The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic and Applied Ecology, 5, 107–121.CrossRefGoogle Scholar
  50. Schimel, J. P., & Bennett, J. (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85, 591–602.CrossRefGoogle Scholar
  51. Schmid, B., Joshi, J., & Schläpfer, F. (2002). Empirical evidence for biodiversity–ecosystem functioning relationships. In A. Kinzig, D. Tilman, & S. Pacala (Eds.), Functional consequences of biodiversity: experimental progress and theoretical extensions. Princeton, NJ: Princeton University Press.Google Scholar
  52. Scholes, R. J., & Archer, S. R. (1997). Tree-grass interactions in savannas. Annual Review of Ecology and Systematics, 28, 517–544.CrossRefGoogle Scholar
  53. Scurlock, J. M. O., & Hall, D. O. (1998). The global carbon sink: a grassland perspective. Global Change Biology, 4, 229–233.CrossRefGoogle Scholar
  54. Siebenkäs, A., Schumacher, J., & Roscher, C. (2016). Resource availability alters biodiversity effects in experimental grass-forb mixtures. PloS One, 11, e0158110.CrossRefGoogle Scholar
  55. Soussana, J. F., Allard, V., Pilegaard, K., Ambus, P., Amman, C., Campbell, C., Ceschia, E., et al. (2007). Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture, Ecosystems & Environment, 121, 121–134.CrossRefGoogle Scholar
  56. Steinbeiss, S., Beßler, H., Engels, C., Temperton, V. M., Buchmann, N., Roscher, C., Kreutziger, Y., Baade, J., Habekost, M., & Gleixner, G. (2008). Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Global Change Biology, 14, 2937–2949.CrossRefGoogle Scholar
  57. Sterner, R. W., & Elser, J. J. (2002). Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton: Princeton University Press.Google Scholar
  58. Strassburg, B. B. N., Kelly, A., Balmford, A., Davies, R. G., Gibbs, H. K., Lovett, A., Miles, L., Orme, C. D. L., Price, J., Turner, R. K., & Rodrigues, A. S. L. (2010). Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conservation Letters, 3, 98–105.CrossRefGoogle Scholar
  59. Strayer, D. L., Power, M. E., Fagan, W. F., Pickett, S. T. A., & Belnap, J. (2003). A classification of ecological boundaries. Bioscience, 53, 723–729.CrossRefGoogle Scholar
  60. Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300–1302.CrossRefGoogle Scholar
  61. Tilman, D., Reich, P. B., Knops, J., Wedin, D., Mielke, T., & Lehman, C. (2001). Diversity and productivity in a long-term grassland experiment. Science, 294, 843–845.CrossRefGoogle Scholar
  62. van der Maarel, E. (1990). Ecotones and ecoclines are different. Journal of Vegetation Science, 1, 135–138.CrossRefGoogle Scholar
  63. Van Der Heijden, M. G. A., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.CrossRefGoogle Scholar
  64. Ward, S. E., Bardgett, R. D., McNamara, N. P., & Ostle, N. J. (2009). Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Functional Ecology, 23, 454–462.CrossRefGoogle Scholar
  65. Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–1633.CrossRefGoogle Scholar
  66. Wardle, D. A., Jonsson, M., Bansal, S., Bardgett, R. D., Gundale, M. J., & Metcalfe, D. B. (2012). Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. Journal of Ecology, 100, 16–30.CrossRefGoogle Scholar
  67. Wilson, J. B., Peet, R. K., Dengler, J., & Pärtel, M. (2012). Plant species richness: the world records. Journal of Vegetation Science, 23, 796–802.CrossRefGoogle Scholar
  68. Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338.CrossRefGoogle Scholar
  69. Wirth, R., Meyer, S., Leal, I., & Tabarelli, V. (2008). Plant herbivore interactions at the forest edge. In U. Lüttge, W. Beyschlag, & J. Murata (Eds.), Progress in botany. Berlin, Heidelberg: Springer.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Emilia Ionela Cojoc
    • 1
  • Carmen Postolache
    • 1
  • Bogdan Olariu
    • 2
  • Carl Beierkuhnlein
    • 3
  1. 1.Department of Systems Ecology and Sustainable DevelopmentUniversity of BucharestBucharestRomania
  2. 2.Department of GeographyUniversity of BucharestBucharestRomania
  3. 3.Department of Biogeography, BayCEERUniversity of BayreuthBayreuthGermany

Personalised recommendations