The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil

  • Regina Maura de MirandaEmail author
  • Fabio Lopes
  • Nilton Évora do Rosário
  • Marcia Akemi Yamasoe
  • Eduardo Landulfo
  • Maria de Fatima Andrade


The air quality in the Metropolitan Area of São Paulo (MASP) is primarily determined by the local pollution source contribution, mainly the vehicular fleet, but there is a concern about the role of remote sources to the fine mode particles (PM2.5) concentration and composition. One of the most important remote sources of atmospheric aerosol is the biomass burning emissions from São Paulo state’s inland and from the central and north portions of Brazil. This study presents a synergy of different measurements of atmospheric aerosol chemistry and optical properties in the MASP in order to show how they can be used as a tool to identify particles from local and remote sources. For the clear identification of the local and remote source contribution, aerosol properties measurements at surface level were combined with vertical profiles information. Over 15 days in the austral winter of 2012, particulate matter (PM) was collected using a cascade impactor and a Partisol sampler in São Paulo City. Mass concentrations were determined by gravimetry, black carbon concentrations by reflectance, and trace element concentrations by X-ray fluorescence. Aerosol optical properties were studied using a multifilter rotating shadowband radiometer (MFRSR), a Lidar system and satellite data. Optical properties, concentrations, size distributions, and elemental composition of atmospheric particles were strongly related and varied according to meteorological conditions. During the sampling period, PM mean mass concentrations were 17.4 ± 10.1 and 15.3 ± 6.9 μg/m3 for the fine and coarse fractions, respectively. The mean aerosol optical depths at 415 nm and Ångström exponent (AE) over the whole period were 0.29 ± 0.14 and 1.35 ± 0.11, respectively. Lidar ratios reached values of 75 sr. The analyses of the impacts of an event of biomass burning smoke transport to the São Paulo city revealed significant changing on local aerosol concentrations and optical parameters. The identification of the source contributions, local and remote, to the fine particles in MASP can be more precisely achieved when particle size composition and distribution, vertical profile of aerosols, and air mass trajectories are analyzed in combination.


Urban aerosols Biomass burning Chemical composition Optical properties 



This research was supported by the Brazilian agency “Fundação de Amparo à Pesquisa do Estado de São Paulo” (FAPESP; Process number 2008/58104-8, 2011/14365-5, and 2012/24689-5). The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website ( used in this publication. Thanks to the European Centre for Medium-Range Weather Forecasts (ECMWF) for making available the Global Reanalysis ERA Interim data at


  1. Ackermann, J. (1998). The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study. Journal of Atmospheric and Oceanic Technology, 15, 1043–1050.CrossRefGoogle Scholar
  2. Andrade, M. F., Miranda, R. M., Fornaro, A., Kerr, A., Oyama, B., André, P. A., & Saldiva, P. H. (2012). Vehicle emissions and PM2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere and Health, 5, 79.CrossRefGoogle Scholar
  3. Ansmann, A. F., Wagner, D., Althausen, D., Müller, D., Herber, A., & Wandinger, U. (2001). European pollution outbreaks during ACE 2: lofted aerosol plumes observed with Raman lidar at the Portuguese coast. Journal of Geophysical Research, 106, 20725–20734.CrossRefGoogle Scholar
  4. Alam, K., Trautmann, T., Blaschke, T., & Majid, H. (2012). Aerosol optical and radiative properties during summer and winter seasons over Lahore and Karachi. Atmospheric Environment, 50, 234–245.CrossRefGoogle Scholar
  5. Arana, A., Loureiro, A. L., Barbosa, H. M., Van Grieken, R., & Artaxo, P. (2014). Optimized energy dispersive X-ray fluorescence analysis of atmospheric aerosols collected at pristine and perturbed Amazon Basin sites. X-Ray Spectrometry, 43(4), 228–237.CrossRefGoogle Scholar
  6. Carvalho, V. S. B., Freitas, E. D., Martins, L. D., Martins, J. A., Mazzoli, C. R., & Andrade, M. F. (2015). Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies. Environmental Science and Policy, 47, 68–79.CrossRefGoogle Scholar
  7. Castanho, A. D. A., & Artaxo, P. (2001). Wintertime and summertime São Paulo aerosol source apportionment study. Atmospheric Environment, 35, 4889–4902.CrossRefGoogle Scholar
  8. Castanho, A. D. A., Martins, J. V., & Artaxo, P. (2008). MODIS aerosol optical depth retrievals with high spatial resolution over na urban area using a critical reflectance. Journal of Geophysical Research, 113, D0220.Google Scholar
  9. Cattrall, C., Reagan, J., Thome, K., & Dubovik, O. (2005). Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations. Journal of Geophysical Research, 110, D10S11.CrossRefGoogle Scholar
  10. CETESB. (2015). São Paulo State Annual Air Quality Report (Relatório de qualidade do ar no Estado de São Paulo), 2014 (in Portuguese—available online at Nov 4, 2015
  11. Ciardini, V., Di Iorio, T., Di Liberto, L., Tirelli, C., Casasanta, G., Di Sarra, A., Fiocco, G., Fuà, D., & Cacciani, M. (2012). Seasonal variability of tropospheric aerosols in Rome. Atmospheric Research, 118, 205–214.CrossRefGoogle Scholar
  12. Draxler, R. R., & Hess, G. D. (1998). An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Australian Meteorological Magazine, 47, 295–308.Google Scholar
  13. Fernald, F. G., Herman, B. M., & Reagan, J. A. (1972). Determination of aerosol height distribution by lidar. Journal of Applied Meteorology, 11, 482–489.CrossRefGoogle Scholar
  14. Franke, K., Ansmann, A., Müller, D., Althausen, D., Wagner, F., & Scheele, R. (2001). One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar. Geophysical Research Letters, 28, 4559–4562.CrossRefGoogle Scholar
  15. Freitas, S. R., Longo, K. M., Dias, M. A. F. S., Dias, P. L. S., Chatfield, R., Prins, E., Artaxo, P., Grell, G. A., & Recuero, F. S. (2005). Monitoring the transport of biomass burning emissions in South America. Environmental Fluid Mechanics, 5, 135–167.CrossRefGoogle Scholar
  16. Guerrero-Rascado, J. L., Ruiz, B., & Alados-Arboledas, L. (2008). Multispectral lidar characterization of the vertical structure of Saharan dust aerosol over southern Spain. Atmospheric Environment, 42, 2668–2681.CrossRefGoogle Scholar
  17. Guerrero-Rascado, J. L., Landulfo, E., Antuña, J. C., Barbosa, H. M., Barja, B, Bastidas, A. E., Bedoya, A. E., da Costa, R. F., Estevan, R., Forno, R. N., Gouveia, D. A., Jiménez, C., Larroza, E. G., Lopes, F. J. S., Montilla-Rosero, E., Moreira, G. A., Nakaema, W. M., Nisperuza, D., Otero, L., Pallotta, J. V., Papandrea, S., Pawelko, E., Quel, E. J., Ristori P., Rodrigues, P. F., Salvador, J., Sánchez, M. F. & Silva, A. (2014). Towards an instrumental harmonization in the framework of LALINET: dataset of technical specifications, Proc. SPIE 9246, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X, 92460O. doi: 10.1117/12.2066873.
  18. Guerrero-Rascado, J. L., Landulfo, E., Antuña, J. C., Barbosa, H. M. J., Barja, B., Bastidas, A. E., Bedoya, A. E., Costa, R., Estevan, R., Forno, R. N., Gouveia, D. A., Jimenez, C., Larroza, E. G., Lopes, F. J. S., Montilla-Rosero, E., Moreira, G. A., Nakaema, W. M., Nisperuza, D., Alegria, D., Manera, M., Otero, L., Papandrea, S., Pallota, J. V., Pawelko, E., Quel, E. J., Ristori, P., Rodrigues, P. F., Salvador, J., Sanchez, M., & Silva, A. (2016). Latin American Lidar Network (LALINET): diagnosis on network instrumentation. Journal of Atmospheric and Solar - Terrestrial Physics, 138–139, 112–120.CrossRefGoogle Scholar
  19. Gioia, S. M. C. L., Babinski, M., Weiss, D. J., & Kerr, A. A. F. S. (2010). Insights into the dynamics and sources of atmospheric lead and particulate matter in São Paulo, Brazil, from high temporal resolution sampling. Atmospheric Research, 98, 478–485.CrossRefGoogle Scholar
  20. Harrison, L., Michalsky, J., & Berndt, J. (1994). Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements. Applied Optics, 33(22), 5118–5125.CrossRefGoogle Scholar
  21. INPE 2016. National Institute for Space research. Portal for the monitoring of vegetation fires. Available at March 21, 2016.
  22. IPCC (2013). Climate change 2013: the physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press 1535 pp.Google Scholar
  23. Klett, J. D. (1981). Stable analytic inversion solution for processing lidar returns. Applied Optics, 20, 211–220.CrossRefGoogle Scholar
  24. Klett, J. D. (1985). Lidar inversion with variable backscatter/extinction ratios. Applied Optics, 24, 1638–1643.CrossRefGoogle Scholar
  25. Landulfo, E., Papayannis, A., Artaxo, P., Castanho, A. D. A., de Freitas, A. Z., Ouza, R. F., Vieira Junior, N. D., Jorge, M. P. M. P., Sánchez-Ccoyllo, O. R., & Moreira, D. S. (2003). Synergetic measurements of aerosols over Sao Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season. Atmospheric Chemistry and Physics, 3, 1523–1539.CrossRefGoogle Scholar
  26. Landulfo, E. & Lopes, F. J. S. (2009). Initial approach in biomass burning aerosol transport tracking with CALIPSO and MODIS satellites, sunphotometer, and a backscatter lidar system in Brazil. In: Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing V, 2009, Bellingham. Proceedings of SPIE—Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing V, v. 7479. p. 747905–1–747905-9.Google Scholar
  27. Liu, Y., Jia, R., Dai, T., Xie, Y., & Shi, G. (2014). A review of aerosol optical properties and radiative effects. Journal of Meteorological Research, 28, 1003–1028.CrossRefGoogle Scholar
  28. Lopes, F.J.S., Moreira, G. A., Rodrigues, P. F., Guerrero-Rascado, J. L., Andrade, M. F., Landulfo, E. (2014). Lidar measurements of tropospheric aerosol and water vapor profiles during the winter season campaigns over the metropolitan area of São Paulo—Brazil. In: Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X, 2014, Amsterdam. Proceedings of SPIE - Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X, 92460H, doi: 10.1117/12.2067374.
  29. Marenco, F., Santacesaria, V., Bais, A., Balis, D., di Sarra, D., Papayannis, A., & Zerefos, C. S. (1997). Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (PAUR campaign). Applied Optics, 36, 6785–6886.CrossRefGoogle Scholar
  30. Marple, V. A., Kenneth, L. R., & Steven, M. B. (1986). A microorifice uniform deposit impactor (MOUDI): description, calibration and use. Journal of Aerosol Science, 17, 489.CrossRefGoogle Scholar
  31. Miranda, R. M., Andrade, M. F., Fornaro, A., Astolfo, R., André, P. A., & Saldiva, P. H. (2012). Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere and Health, 5, 63.CrossRefGoogle Scholar
  32. Molnár, A., & Mézáros, E. M. (2001). On the relation between the size and chemical composition of aerosol particles and their optical properties. Atmospheric Environment, 25, 5053–5058.CrossRefGoogle Scholar
  33. Müller, D., Ansmann, A., Mattis, I., Tesche, M., Wandinger, U., Althausen, D., & Pisani, G. (2007). Aerosol-type-dependent lidar ratios observed with Raman lidar. Journal of Geophysical Research, 112, D16202.CrossRefGoogle Scholar
  34. Olcese, L. E., Palancar, G. G., & Toselli, B. M. (2014). Aerosol optical properties in central Argentina. Journal of Aerosol Science, 68, 25–37.CrossRefGoogle Scholar
  35. Omar, A. H., Won, J. G., Winker, D. M., Yoon, S. C., Dubovik, O., & McCormick, M. P. (2005). Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. Journal of Geophysical Research, 110, D10S14.CrossRefGoogle Scholar
  36. Omar, A. H., Winker, D. M., Kittaka, C., Vaughan, M. A., Liu, Z., Hu, Y., Trepte, C. R., Rogers, R. R., Ferrare, R. A., Lee, K., Kuehn, R. E., & Hostetler, C. A. (2009). The CALIPSO automated aerosol classification and lidar ratio selection algorithm. Journal Atmospheric Oceanic Technology, 26, 1994–2014.CrossRefGoogle Scholar
  37. Rosário, N. M. E., Yamasoe, M. A., Sayão, A., & Siqueira, R. (2008). Multifilter rotating shadowband radiometer calibration for spectral aerosol optical depth retrievals over São Paulo City, Brazil. Applied Optics, 47, 1171.CrossRefGoogle Scholar
  38. Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics: from air pollution to climate change. New York: Wiley.Google Scholar
  39. Siva Dias, M. A. F., Dias, J., Carvalho, L. M. V., Freitas, E. D., & Silva Dias, P. L. (2013). Changes in extreme daily rainfall for São Paulo, Brazil. Climatic Change, 116, 705–722.CrossRefGoogle Scholar
  40. Souza, D. Z., Vasconcellos, P. C., Lee, H., Aurela, M., Saarnio, K., Teinila, K., & Hillamo, R. (2014). Composition of PM2.5 and PM10 collected at urban sites in Brazil. Aerosol and Air Quality Research, 14, 168–176.Google Scholar
  41. Sugahara, S., Rocha, R. P., & Silveira, R. (2008). Non-stationary frequency analysis of extreme daily rainfall in São Paulo, Brazil. International Journal of Climatology, 29, 1339–1349.CrossRefGoogle Scholar
  42. Vasconcellos, E. A. (2005). Urban change, mobility and transport in São Paulo: three decades, three cities. Transport Policy, 12, 91–104.CrossRefGoogle Scholar
  43. Zawadzka, O., Markowicz, K. M., Pietruczuk, A., Zielinski, T., & Jaroslawski, J. (2013). Impact of urban pollution emitted in Warsaw on aerosol properties. Atmospheric Environment, 69, 15–28.CrossRefGoogle Scholar
  44. Zdun, A., Rozwadowska, A., & Kratzer, S. (2011). Seasonal variability in the optical properties of Baltic aerosols. Oceanologia, 53(1), 7–34.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Regina Maura de Miranda
    • 1
    Email author
  • Fabio Lopes
    • 2
  • Nilton Évora do Rosário
    • 3
  • Marcia Akemi Yamasoe
    • 2
  • Eduardo Landulfo
    • 4
  • Maria de Fatima Andrade
    • 2
  1. 1.School of Arts, Sciences, and HumanitiesUniversity of São PauloSão PauloBrazil
  2. 2.Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Ciências AtmosféricasUniversidade de São PauloSão PauloBrazil
  3. 3.Environmental Sciences DepartmentFederal University of São PauloDiademaBrazil
  4. 4.Nuclear and Energy Research Institute, IPEN-CNEN/SPSão PauloBrazil

Personalised recommendations