Sources of errors and uncertainties in the assessment of forest soil carbon stocks at different scales—review and recommendations

  • E. I. VanguelovaEmail author
  • E. Bonifacio
  • B. De Vos
  • M. R. Hoosbeek
  • T. W. Berger
  • L. Vesterdal
  • K. Armolaitis
  • L. Celi
  • L. Dinca
  • O. J. Kjønaas
  • P. Pavlenda
  • J. Pumpanen
  • Ü. Püttsepp
  • B. Reidy
  • P. Simončič
  • B. Tobin
  • M. Zhiyanski


Spatially explicit knowledge of recent and past soil organic carbon (SOC) stocks in forests will improve our understanding of the effect of human- and non-human-induced changes on forest C fluxes. For SOC accounting, a minimum detectable difference must be defined in order to adequately determine temporal changes and spatial differences in SOC. This requires sufficiently detailed data to predict SOC stocks at appropriate scales within the required accuracy so that only significant changes are accounted for. When designing sampling campaigns, taking into account factors influencing SOC spatial and temporal distribution (such as soil type, topography, climate and vegetation) are needed to optimise sampling depths and numbers of samples, thereby ensuring that samples accurately reflect the distribution of SOC at a site. Furthermore, the appropriate scales related to the research question need to be defined: profile, plot, forests, catchment, national or wider. Scaling up SOC stocks from point sample to landscape unit is challenging, and thus requires reliable baseline data. Knowledge of the associated uncertainties related to SOC measures at each particular scale and how to reduce them is crucial for assessing SOC stocks with the highest possible accuracy at each scale. This review identifies where potential sources of errors and uncertainties related to forest SOC stock estimation occur at five different scales—sample, profile, plot, landscape/regional and European. Recommendations are also provided on how to reduce forest SOC uncertainties and increase efficiency of SOC assessment at each scale.


Forest soils Carbon stocks Sampling Plot Soil profile Landscape National European 



The authors would like to acknowledge the EU COST Action FP0803 “Belowground carbon turnover in European forests” for providing the platform and financial help for meetings where this review was initiated and further discussed and progressed.


  1. Abella, S. R., & Zimmer, B. W. (2007). Estimating organic carbon from loss-on-ignition in northern Arizona forest soils. Soil Science Society of America Journal, 71, 545–550.CrossRefGoogle Scholar
  2. Arrouays, D., Deslais, W., & Badeau, V. (2001). The carbon content of topsoil and its geographical distribution in France. Soil Use and Management, 17, 7–11.CrossRefGoogle Scholar
  3. Bárcena, T. G., Gundersen, P., & Vesterdal, L. (2014). Afforestation effects on SOC in former cropland: oak and spruce chronosequences resampled after 13 years. Global Change Biology, 20, 2938–2952.CrossRefGoogle Scholar
  4. Baritz, R., & Van Ranst, E. (2006). CarboInvent. Methodological standards to detect forest soil carbon stocks and stock changes related to land use change and forestry: Part I: plot level aspects. Final report (Deliverable 3.5), Doc. No: WP3-D3.5-Plot RUG, Issue/Rev.: 1.0.Google Scholar
  5. Baritz, R., Adler, G., Wolff, B., & Wilke, B. M. (1999). Carbon in German forest soils and its relation to climate change. Zeitschrift für Angewandte Geologie, 45, 218–227.Google Scholar
  6. Baritz, R., Zirlewagen, D., & Van Ranst, E. (2006). CarboInvent. Methodological standards to detect forest soil carbon stocks and stock changes related to land use change and forestry: Part II—landscape level. Final report (Deliverable 3.5). Doc. No: WP3-D3.5-Landscape RUG, Issue/Rev.: 2.0.Google Scholar
  7. Baritz, R., Eberhardt, E., Van Liedekerke, M.H., & Panagos, P. (2008). Environmental assessment of soil for monitoring: Volume III database design and selection. EUR 23490 EN/3 Office for the Official Publications of the European Communities, Luxembourg, 125 pp. doi: 10.2788/93697.
  8. Baritz, R., Seufert, G., Montanarella, L., & Van Ranst, E. (2010). Carbon concentrations and stocks in forest soils of Europe. Forest Ecology and Management, 260, 262–277.CrossRefGoogle Scholar
  9. Bastrup-Birk, A., Neville, P., Chirici, G. & Houston, T. (2007). The BioSoil Forest Biodiversity Field Manual. Hamburg: ICP Forests.Google Scholar
  10. Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151–163.CrossRefGoogle Scholar
  11. Batjes, N. H. (2002). Carbon and nitrogen stocks in the soils of Central and Eastern Europe. Soil Use and Management, 18, 324–329.CrossRefGoogle Scholar
  12. Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. D. (2005). Carbon losses from all soils across England and Wales 1978-2003. Nature, 437, 245–248.CrossRefGoogle Scholar
  13. Bellhouse, D. R. (1977). Some optimal designs for sampling in two dimensions. Biometrika, 64, 605–611.CrossRefGoogle Scholar
  14. Bellhouse, D.R. (1988). In P. R. Krisnaiah, & C.R. Rao (Ed.), Systematic sampling, Handbook of statistics, vol. 6 (pp. 125–146). North-Holland.Google Scholar
  15. Benham, S. E., Vanguelova, E. I., & Pitman, R. M. (2012). Short and long term changes in carbon, nitrogen and acidity in the forest soils under oak at the Alice Holt Environmental Change Network site. Science of the Total Environment, 421-422, 82–93.CrossRefGoogle Scholar
  16. Berg, B., Johansson, M.-B., Nilsson, Å., Gundersen, P., & Norell, L. (2009). Sequestration of carbon in the humus layer of Swedish forests—direct measurements. Canadian Journal of Forest Research, 39, 962–975.CrossRefGoogle Scholar
  17. Bernoux, M., Arrouays, D., Cerri, C., Volkoff, B., & Jolivet, C. (1998). Bulk densities of Brazilian Amazon soils related to other soil properties. Soil Science Society of America Journal, 62, 743–749.CrossRefGoogle Scholar
  18. Bhatti, J. S., & Bauer, I. E. (2002). Comparing loss-on-ignition with dry combustion as a method for determining carbon content in upland and lowland forest ecosystems. Communications in Soil Science and Plant Analysis, 33, 3419–3430.CrossRefGoogle Scholar
  19. Bishop, T. F. A., McBratney, A. B., & Laslett, G. M. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91, 27–45.CrossRefGoogle Scholar
  20. Blake, G.R., & Hartge, K.N. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis, Part 1: physical and mineralogical methods, 2nd Edn. SSSA Book Series 5 (pp. 363–375). Madison.Google Scholar
  21. Blake, L., Goulding, K. W. T., Mott, C. J. B., & Poulton, P. R. (2000). Temporal changes in chemical properties of air-dried stored soils and their interpretation for long-term experiments. European Journal of Soil Science, 51, 345–353.CrossRefGoogle Scholar
  22. Bonifacio, E., Falsone, G., Simonov, G., & Celi, L. (2008). Estimates of C stocks and pedogenic processes in the Russian Taiga. Advances in GeoEcology, 39, 301–312.Google Scholar
  23. Bonifacio, E., Falsone, G., & Petrillo, M. (2011). Humus forms, organic matter stocks and carbon fractions in forest soils of North-western Italy. Biology and Fertility of Soils, 47, 555–566.CrossRefGoogle Scholar
  24. Bradley, R. I., Milne, R., Bell, J., Lilly, A., Jordan, C., & Higgins, A. (2005). A soil carbon and land use database for the United Kingdom. Soil Use and Management, 21, 363–369.CrossRefGoogle Scholar
  25. Callesen, I., Liski, J., Raulund-Rasmussen, K., Olsson, M. T., Tau-Strand, L., Vesterdal, L., & Westman, C. J. (2003). Soil carbon stores in Nordic well-drained forest soils—relationships with climate and texture class. Global Change Biology, 9, 358–370.CrossRefGoogle Scholar
  26. Cannell, M. G. R., Dewar, R. C., & Thornley, J. H. M. (1992). Carbon flux and storage in European forest. In A. Teller, P. Mathy, & J. N. R. Je_ers (Eds.), Responses of forest ecosystems to environmental changes (pp. 256–271). London: Elsevier.CrossRefGoogle Scholar
  27. Chamberlain, P. M., Emmett, B. A., Scott, W. A., Black, H. I. J., Hornung, M., & Frogbrook, Z. L. (2010). No change in topsoil carbon levels of Great Britain, 1978–2007. Biogeosciences Discussions, 7, 2267–2311.CrossRefGoogle Scholar
  28. Chapman, S. J., Bell, J., Donnelly, D., & Lilly, A. (2009). Carbon stocks in Scottish peatlands. Soil Use and Management, 25, 105–112.CrossRefGoogle Scholar
  29. Cienciala, E., Seufert, G., Blujdea, V., Grassi, G., & Exnerová, Z. (2010). Harmonized methods for assessing carbon sequestration in European forests Results of the Project “Study under EEC 2152/2003 Forest Focus regulation on developing harmonized methods for assessing carbon sequestration in European forests”, JRC Scientific and Technical reports.Google Scholar
  30. Conant, R. T., Smith, G. R., & Paustian, K. (2003). Spatial variability of soil carbon in forested and cultivated sites: implications for change detection. Journal of Environmental Quality, 32, 278–286.CrossRefGoogle Scholar
  31. Conen, F., Zerva, A., Arrouays, D., Jolivet, C., Jarvis, P., Grace, J., & Mencuccini, M. (2004). The carbon balance of forest soils; detectability of changes in soil carbon stocks in temperate and boreal forests. In H. Griffith & P. Jarvis (Eds.), The carbon balance of forest biomes (pp. 233–247). Oxford: Bios Scientific Press.Google Scholar
  32. Cools, N., & De Vos, B. (2010). Sampling and Analysis of Soil. Manual Part X, 208 pp. In Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE, ICP Forests, Hamburg. [].
  33. Cools, N. & De Vos, B. (2013) Forest soil: Characterization, sampling, physical, and chemical analyses. In “Forest monitoring — methods for terrestrial investigations in Europe with an overview of North America and Asia”. Chapter 15. M. Ferretti and R. Fischer (Eds.). Developments in Environmental Science, 12, 267–300. Google Scholar
  34. Cools, N., Mikkelsen, J. H., & De Vos, B. (2008). Soil organic carbon stocks and stock changes on Flemish level I and level II plots. FSCC supporting study of the EU Forest Focus BioSoil demonstration project. INBO.IR.2008.50. Brussels: Research Institute for Nature and Forest.Google Scholar
  35. Corti, G., Ugolini, F. C., & Agnelli, A. (1998). Classing the soil skeleton (greater than two millimeters): proposed approach and procedure. Soil Science Society of America Journal, 62, 1620–1629.CrossRefGoogle Scholar
  36. Cresser, M. S., Gonzalez, R. L., & Leon, A. (2007). Evaluation of the use of soil depth and parent material data when predicting soil organic carbon concentration from LOI values. Geoderma, 140, 132–139.CrossRefGoogle Scholar
  37. Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173.CrossRefGoogle Scholar
  38. De Vos, B. (2009). Uncertainties of forest soil carbon stock assessment in Flanders. Doctoral dissertation no. 865 of the Faculty of Bioscience Engineering. K.U.Leuven. 318 p.Google Scholar
  39. De Vos, B., Vandecasteele, B., Deckers, J., & Muys, B. (2005a). Capability of loss-on-ignition as a predictor of total organic carbon in non-calcareous forest soils. Communications in Soil Science and Plant Analysis, 36, 2899–2921.CrossRefGoogle Scholar
  40. De Vos, B., Van Meirvenne, M., Quataert, P., Deckers, J., & Muys, B. (2005b). Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Science Society of America Journal, 69, 500–510.CrossRefGoogle Scholar
  41. De Vos, B., Lettens, S., Muys, B., & Deckers, S. (2007). Walkley-Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use and Management, 23, 221–229.CrossRefGoogle Scholar
  42. De Vos, B., Cools, N., Ilvesniemi, H., Vesterdal, L., Vanguelova, E., & Carnicelli, S. (2015). Benchmark values for forest soil carbon stocks in Europe: results from a large scale forest soil survey. Geoderma, 251-252, 33–46.CrossRefGoogle Scholar
  43. De Vries, W., Reinds, G.J., Van Kerkvoorde, M.S., Hendriks, C.M.A., Leeters, E.E.J.M., Gross, C.P., Voogd, J.C.H., & Vel, E.M. (2000). Intensive monitoring of forest ecosystems in Europe. Technical report 2000. EC-UN/ECE (2000) and Forest Intensive Monitoring Coordinating Institute (FIMCI), Brussels, Geneva, 191 pp.Google Scholar
  44. De Vries, W., Reinds, G.J., Posch, M., Sanz, M.J., Krause, G.H.M., Calatayud, V., Renaud, J.P., Dupouey, J.L., Sterba, H., Vel, E.M., Dobbertin, M., Gundersen, P., & Voogd, J.C.H. (2003). Intensive monitoring of forest ecosystems in Europe, 2003. Technical Report. EC/UN-ECE 2003, Brussels, Geneva, 163 pp.Google Scholar
  45. Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & Wisniewski, J. (1994). Carbon pools and fluxes of global forest ecosystems. Science of the Total Environment, 263, 185–190.Google Scholar
  46. Ellert, B. H., Janzen, H. H., & McConkey, B. G. (2001). Measuring and comparing soil carbon storage. In R. Lal, J. M. Kimble, R. F. Follett, & B. A. Stewart (Eds.), Assessment methods for soil carbon (pp. 131–1465). Boca Raton: CRC Press.Google Scholar
  47. FAO (2006). Guidelines for soil profile description and classification (4th ed.). Rome: Food and 773 Agriculture Organisation.Google Scholar
  48. Fernández-Romero, M. L., Lozano-García, B., & Parras-Alcántara, L. (2014). Topography and land use change effects on the soil organic carbon stock of forest soils in Mediterranean natural areas. Agriculture, Ecosystems & Environment, 195, 1–9.CrossRefGoogle Scholar
  49. Finér, L., Helmisaari, H.–S., Lõhmus, K., Majdi, H., Brunner, I., Børja, I., et al. (2007). Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystems, 141, 394–405.Google Scholar
  50. Frogbrook, Z. L., Bell, J., Bradley, R. I., Evans, C., Lark, R. M., Reynolds, B., Smith, P., & Towers, W. (2009). Quantifying terrestrial carbon stocks: examining the spatial variation in two upland areas in the UK and a comparison to mapped estimates of soil carbon. Soil Use and Management, 25, 320–332.CrossRefGoogle Scholar
  51. Goidts, E., Van Wesemael, B., & Crucifix, M. (2009). Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales. European Journal of Soil Science, 60, 723–739.CrossRefGoogle Scholar
  52. Goodale, C. L., Apps, M. J., Birdsey, R. A., et al. (2002). Forest carbon sinks in the northern hemisphere. Ecological Applications, 12, 891–899.CrossRefGoogle Scholar
  53. Grace, J. (2004). Understanding and managing the global carbon cycle. Journal of Ecology, 92, 189–202.CrossRefGoogle Scholar
  54. Grewal, K. S., Buchan, G. D., & Sherlock, R. R. (1991). A comparison of three methods of organic carbon determination in some New Zealand soils. Journal of Soil Science, 42, 251–257.CrossRefGoogle Scholar
  55. Griffiths, R. P., Madritch, M. D., & Swanson, A. K. (2009). The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): implications for the effects of climate change on soil properties. Forest Ecology and Management, 257, 1–7.CrossRefGoogle Scholar
  56. Grüneberg, E., Schöning, I., Kalko, E. K. V., & Weisser, W. W. (2010). Regional organic carbon stock variability: a comparison between depth increments and soil horizons. Geoderma, 155, 426–433.CrossRefGoogle Scholar
  57. Häkkinen, M., Heikkinen, J., & Mäkipää, R. (2011). Soil carbon stock increases in the organic layer of boreal middle-aged stands. Biogeoscience, 8, 1279–1289.CrossRefGoogle Scholar
  58. Hansen, K., Vesterdal, L., Schmidt, I. K., Gundersen, P., Sevel, L., Bastrup-Birk, A., Pedersen, L. B., & Bille-Hansen, J. (2009). Litterfall and nutrient return in five tree species in a common garden experiment. Forest Ecology and Management, 257, 2133–2144.CrossRefGoogle Scholar
  59. Harrison, A. F., & Bocock, K. L. (1981). Estimation of soil bulk-density from loss-on-ignition values. Journal of Applied Ecology, 8, 919–927.CrossRefGoogle Scholar
  60. Harrison, R. B., Adams, A. B., Licata, C., Flaming, B., Wagoner, G. L., Carpenter, P., & Vance, E. D. (2003). Quantifying deep-soil and coarse-soil fractions: avoiding sampling bias. Soil Science Society of America Journal, 67, 1602–1606.CrossRefGoogle Scholar
  61. Heim, A., Wehrli, L., Eugster, W., & Schmidt, M. W. I. (2009). Effects of sampling design on the probability to detect soil carbon stock changes at the Swiss CarboEurope site Lägeren. Geoderma, 149, 347–354.CrossRefGoogle Scholar
  62. Hoosbeek, M. R., & Scarascia-Mugnozza, G. E. (2009). Increased litter build up and soil organic mattter stabilization in a poplar plantation after 6 years of atmospheric CO2 enrichment (FACE): final results of POP-EuroFACE compared to other forest FACE experiments. Ecosystems, 12, 220–239. doi: 10.1007/s10021-008-9219-z.CrossRefGoogle Scholar
  63. Hopkins, D. W., Waite, I. S., McNicol, J. W., Poulton, P. R., Macdonald, A. J., & O'Donnell, A. G. (2009). Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades. Global Change Biology, 15, 1739–1754.CrossRefGoogle Scholar
  64. Howard, P. J. A., Loveland, P. J., Bradley, R. I., Dry, F. T., Howard, D. M., & Howard, D. C. (1995). The carbon content of soil and its geographical distribution in Great Britain. Soil Use and Management, 11, 9–15.CrossRefGoogle Scholar
  65. Howard, P. J. A., Howard, D. M., & Lowe, L. E. (1998). Effects of tree species and soil physico-chemical conditions on the nature of soil organic matter. Soil Biology & Biochemistry, 30, 285–297.CrossRefGoogle Scholar
  66. IPCC (2000). In R. T. Watson, I. R. Noble, B. Bolin, N. H. Ravindranath, D. J. Verardo, & D. J. Dokken (Eds.), Land use, land-use change, and forestry (p. 375). Cambridge: Cambridge University PressGoogle Scholar
  67. IPCC (2003). In J. Penman et al. (Eds.), Available online at August 13, 2004 Good practice guidance for land use, land-use change, and forestry. National Greenhouse Gas Inventories Programme, the intergovernmental panel on climate change.Google Scholar
  68. IPCC (2006). IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas Inventories Programme, The Intergovernmental panel on climate change. In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), Hayama.Google Scholar
  69. ISO (1994). ISO 11464, Soil Quality – Pretreatment of samples for physico-chemical analysis. International Organization for Standardization, Geneva, pp. 9Google Scholar
  70. Jalabert, S. S. M., Martin, M. P., Renaud, J. P., Boulonne, L., Jolivet, C., Montanarella, L., & Arrouays, D. (2010). Estimating forest soil bulk density using boosted regression modelling. Soil Use and Management, 26, 516–528.CrossRefGoogle Scholar
  71. Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M. F., Bampa, F., Wesemael, B., Harrison, R. B., Guerrini, I. A., Richter Jr., D., Rustad, L., Lorenz, K., Chabbi, A., & Miglietta, F. (2014). Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment, 468-469, 376–383.CrossRefGoogle Scholar
  72. Jian-Bing, W., Du-Ning, X., Xing-Yi, Z., Xiu-Zhen, L., & Xiao-Yu, L. (2006). Spatial variability of soil organic carbon in relation to environmental factors of a typical small watershed in the black soil region, Northeast China. Environmental Monitoring and Assessment, 121, 597–613.CrossRefGoogle Scholar
  73. Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423–436.CrossRefGoogle Scholar
  74. Jolivet, C., Arrouays, D., & Bernoux, M. (1998). Comparison between analytical methods for organic carbon and organic matter determination in sandy spodosols of France. Communications in Soil Science and Plant Analysis, 29, 2227–2233.CrossRefGoogle Scholar
  75. Jones, R. J. A., Hiederer, R., Rusco, E., & Montanarella, L. (2005). Estimating organic carbon in the soils of Europe for policy support. European Journal of Soil Science, 56, 655–671.CrossRefGoogle Scholar
  76. Jungkunst, H. F., Flessa, H., Scherber, C., & Fiedler, S. (2008). Groundwater level controls CO2, N2O and CH4 fluxes of three different hydromorphic soil types of a temperate forest ecosystem. Soil Biology and Biochemistry, 40, 2047–2054.CrossRefGoogle Scholar
  77. Kasozi, G. N., Nkedi-Kizza, P., & Harris, W. G. (2009). Varied carbon content of organic matter in histosols, spodosols, and carbonatic soils. Soil Science Society of America Journal, 73, 1313–1318.CrossRefGoogle Scholar
  78. Kirwan, N., Oliver, M. A., Moffat, A. J., & Morgan, G. W. (2005). Sampling the soil in long-term forest plots: The implications of spatial variation. Environmental Monitoring and Assessment, 111(1-3), 149–172.Google Scholar
  79. Kobal, M., Urbancic, M., Potocic, N., De Vos, B., & Simoncic, P. (2011). Pedotransfer functions for bulk density estimation of forest soils. Sumarski List, 135, 19–27.Google Scholar
  80. Komy, Z. R. (1995). Comparative-study of titrimetric and gravimetric methods for the determination of organic-carbon in soils. International Journal of Environmental Analytical Chemistry, 60, 41–47.CrossRefGoogle Scholar
  81. Krebs, C. J. (1999). Ecological methodology. Menlo Park, CA: Addison Wesley Longman.Google Scholar
  82. Kulmatiski, A., Vogt, D. J., Siccama, T. G., & Beard, K. H. (2003). Detecting nutrient pool changes in rocky forest soils. Soil Science Society of America Journal, 67, 1282–1286.CrossRefGoogle Scholar
  83. Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220, 242–258.CrossRefGoogle Scholar
  84. Lal, R. (2008). Sequestration of atmospheric CO2 in global carbon pools. Energy & Environmental Science, 1, 86–100.CrossRefGoogle Scholar
  85. Lettens, S., Van Orshoven, J., Van Wesemael, B., & Muys, B. (2004). Soil organic and inorganic carbon content of landscape units in Belgium for 1950–1970. Soil Use and Management, 20, 40–47.CrossRefGoogle Scholar
  86. Lettens, S., Van Orshoven, J., Van Wesemael, B., De Vos, B., & Muys, B. (2005). Stocks and fluxes of soil organic carbon for landscape units in Belgium derived from heterogeneous data sets for 1990 and 2000. Geoderma, 127, 11–23.CrossRefGoogle Scholar
  87. Lettens, S., De Vos, B., Quataert, P., van Wesemael, B., Muys, B., & Van Orshoven, J. (2007). Variable carbon recovery of Walkley-Black analysis and implications for national soil organic carbon accounting. European Journal of Soil Science, 58, 1244–1253.CrossRefGoogle Scholar
  88. Liski, J. (1995). Variation in soil organic carbon and thickness of soil horizons within a boreal forest stand-effect of trees and implications for sampling. Silva Fennica, 29, 255–266.CrossRefGoogle Scholar
  89. Liski, J., & Westman, C. J. (1997). Carbon storage in forest soils of Finland. Effect of termoclimate. Biogeochemistry, 36, 239–260.CrossRefGoogle Scholar
  90. Liski, J., Perruchoud, D., & Karjalainen, T. (2002). Increasing carbon stocks in the forest soils of western Europe. Forest Ecology and Management, 169, 159–175.CrossRefGoogle Scholar
  91. Mäkipää, R., Liski, J., Guendehou, S., Malimbwi, R., & Kaaya, A. (2012). Soil carbon monitoring using surveys and modeling General description and application in the United Republic of Tanzania, FAO forestry paper No. 168, 2012.Google Scholar
  92. Makkonen, K., & Helmisaari, H. S. (1999). Assessing fine-root biomass and production in a Scots pine stand—comparison of soil core and root ingrowth core methods. Plant and Soil, 210, 43–50.CrossRefGoogle Scholar
  93. Martin, M. P., Lo Seen, D., Boulonne, L., Jolivet, C., Nair, K. M., Bourgeon, G., & Arrouays, D. (2009). Optimizing pedotransfer functions for estimating soil bulk density using boosted regression trees. Soil Science Society of America Journal, 73, 485–493.CrossRefGoogle Scholar
  94. Matejovic, I. (1993). Determination of carbon, hydrogen, and nitrogen in soils by automated elemental analysis (dry combustion method). Communication of Soil Science and Plant Analysis, 24, 2213–2222.CrossRefGoogle Scholar
  95. McNabb, D. H., Cromack Jr., K., & Fredriksen, R. L. (1986). Variability of nitrogen and carbon in surface soils of six forest types in the Oregon Cascades. Soil Science Society of America Journal, 50, 1037–1041.CrossRefGoogle Scholar
  96. Melin, Y., Petersson, H., & Nordfjell, T. (2009). Decomposition of stump and root systems of Norway spruce in Sweden—a modelling approach. Forest Ecology and Management, 257, 1445–1451.CrossRefGoogle Scholar
  97. Morison, J., Matthews, R., Miller, G., Perks, M., Randle, T., Vanguelova, E., White, M. and Yamulki, S. (2012). Understanding the carbon and greenhouse gas balance of forests in Britain. Forestry Commission Research Report. Forestry Commission, Edinburgh. i–vi + 1–149 pp.$FILE/FCRP018.pdf. Accessed 14 Oct 2016.
  98. Morison, J.I.L., Vanguelova, E.I., Broadmeadow, S., Perks, M., Yamulki, S. and Randle, T. (2010). Understanding the GHG implications of forestry on peat soils in Scotland. Report for Forestry Commission Scotland, October 2010, Forest Research, 56pp.$FILE/FCS_forestry_peat_GHG_final_Oct13_2010.pdf. Accessed 14 Oct 2016.
  99. Muukkonen, P., Häkkinen, M., & Mäkipää, R. (2009). Spatial variation in soil carbon in the organic layer of managed boreal forest soil – implications for sampling design. Environmental Monitoring and Assessment, 158, 67–76.Google Scholar
  100. Nelson, D.W., & Sommers, L.E. (1996). Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America Book Series no. 5 (pp. 961–1010).Google Scholar
  101. O’Connell, D. A., Ryan, P. J., McKenzie, N. J., & Ringrose-Voase, A. J. (2000). Quantitative site and soil descriptors to improve the utility of forest soil surveys. Forest Ecology and Management, 138, 107–122.CrossRefGoogle Scholar
  102. Oueslati, I., Allamano, P., Bonifacio, E., & Claps, P. (2013). Vegetation and topographic control on the spatial variability of forest soil organic carbon. Pedosphere, 23, 48–58.CrossRefGoogle Scholar
  103. Palmer, C. J., Smith, W. D., & Conkling, B. L. (2002). Development of a protocol for monitoring status and trends in forest soil carbon at a national level. Environmental Pollution, 116, 209–219.CrossRefGoogle Scholar
  104. Peltoniemi, M., Thurig, E., Ogle, S., Palosuo, T., Schrumpf, M., Wutzler, T., Butterbach-Bahl, K., Chertov, O., Komarov, A., Mickhailov, A., Gardenas, A., Perry, C., Liski, J., Smith, P., & Makipaa, R. (2007). Models in country scale carbon accounting of forest soils. Silva Fennica, 41, 575–602.Google Scholar
  105. Périé, C., & Ouimet, R. (2008). Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian Journal of Soil Science, 88, 315–325.CrossRefGoogle Scholar
  106. Post, W. M., Izaurralde, R. C., Mann, L. K., & Bliss, N. (2001). Monitoring and verifying changes of organic carbon in soils. Climatic Change, 51, 73–99.CrossRefGoogle Scholar
  107. Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156, 75–83.CrossRefGoogle Scholar
  108. Saby, N., & Arrouays, D. (2004). Simulation of the use of a soil-monitoring network to verify carbon sequestration in soils: will changes in organic carbon stocks be detectable? Soil Science and Plant Analysis, 35, 2379–2396.CrossRefGoogle Scholar
  109. Saby, N. P. A., Bellamy, P. H., Morvan, X., Arrouays, D., Jones, R. J. A., Verheijen, F. G. A., Kibblewhite, M. G., Verdoot, A. Y., Üveges, J. B., Freudenschuß, A., & Simota, C. (2008). Will European soil-monitoring networks be able to detect changes in topsoil organic carbon? Global Change Biology, 14, 1–11.CrossRefGoogle Scholar
  110. Saiz, G., Green, C., Butterbach-Bahl, K., Kiese, R., Avitabile, V., & Farrell, E. P. (2006). Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant and Soil, 287, 161–174.CrossRefGoogle Scholar
  111. Schils, R.L.M., Kuikman, P., & Liski, J. et al. (2008). Review of existing information on the interrelations between soil and climate change (CLIMSOIL). In: Technical Report - 2008 - 048 (pp. 208) European Commission, Brussels, Belgium.Google Scholar
  112. Schöning, I., Totsche, K. U., & Kögel-Knabner, I. (2006). Small scale spatial variability of organic carbon stocks in litter and solum of a forested Luvisol. Geoderma, 136, 631–642.CrossRefGoogle Scholar
  113. Schrumpf, M., Schulze, E. D., Kaiser, K., & Schumacher, J. (2011). How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences Discussion, 8, 1–47.CrossRefGoogle Scholar
  114. Seibert, J., Stendahl, J., & Sørensen, R. (2007). Topographical influences on soil properties in boreal forests. Geoderma, 141, 139–148.CrossRefGoogle Scholar
  115. Shapiro, C. A., & Kranz, W. L. (1992). Comparison of auger and core soil sampling methods to determine soil nitrate under field conditions. Journal of Productive Agriculture, 5, 358–362.CrossRefGoogle Scholar
  116. Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155–176.CrossRefGoogle Scholar
  117. Skopp, J. M. (2000). Physical properties of primary particles. In M. E. Sumner (Ed.), Handbook of soil science (pp. A3–A17). Boca Raton: CRC Press.Google Scholar
  118. Smith, P. (2004). How long before a change in soil organic carbon can be detected? Global Change Biology, 10, 1878–1883.CrossRefGoogle Scholar
  119. Smith, P. (2008). Land use change and soil organic carbon dynamics. Nutrient Cycling and Agroecosystems, 81, 169–178.CrossRefGoogle Scholar
  120. Smith, P., Smith, J., Wattenbach, M., Meyer, J., Lindner, M., Zaehle, S., Hiederer, R., Jones, R., Montanarella, L., Rounsevell, M., Reginster, I., & Kankaanpää, S. (2006). Projected changes in mineral soil carbon of European forests, 1990-2100. Canadian Journal of Soil Science, 86, 159–169.CrossRefGoogle Scholar
  121. Smith, P., Chapman, S. J., Scott, W. A., Black, H. I. J., Wattenbach, M., Milne, R., Campbell, C. D., Lilly, A., Ostle, N., Levy, P. E., Lumsdon, D. G., Millard, P., Towers, W., Zaehle, S., & Smith, J. U. (2007). Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978-2003. Global Change Biology, 13, 2605–2609.CrossRefGoogle Scholar
  122. Soil Survey Staff (2010). Keys to soil taxonomy (11th ed.). Washington, DC: USDA/NRCS. U.S. Government Printing Office.Google Scholar
  123. Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74, 65–105.CrossRefGoogle Scholar
  124. Stolbovoy, V., Montanarella, L., Filippi, N., Jones, A., Gallego, J., & Grassi, G. (2007). Soil sampling protocol to certify the changes of organic carbon stock in mineral soil of the European Union. Version 2. EUR 21576 EN/2. 56 pp. Luxenbourg: Office for Official Publications of the European Communities.Google Scholar
  125. Tamminen, P., & Derome, J. (2005). Temporal trends in chemical parameters of upland forest soils in southern Finland. Silva Fennica, 39, 313–330.CrossRefGoogle Scholar
  126. Tamminen, P., & Starr, M. R. (1990). A survey of forest soil properties related to soil acidification in southern Finland. In P. Kauppi, K. Kenttämies, & P. Anttila (Eds.), Acidification in Finland (pp. 231–247). Berlin - Heidelberg: Springer-Verlag.Google Scholar
  127. Tamminen, P., & Starr, M. (1994). Bulk density of forested mineral soils. Silva Fennica, 28, 53–60.CrossRefGoogle Scholar
  128. Tobin, B., Black, K., McGurdy, L., & Nieuwenhuis, M. (2007). Estimates of decay rates of components of coarse woody debris in thinned Sitka spruce forests. Forestry, 80, 455–469.CrossRefGoogle Scholar
  129. Van Remortel, R. D., & Shields, D. A. (1993). Comparison of clod and core methods for determination of soil bulk density. Communication of Soil Science of Plant Analyses., 24, 2517–2528.CrossRefGoogle Scholar
  130. Vandecasteele, B., De Vos, B., Muys, B., & Tack, F. M. G. (2005). Rates of forest floor decomposition and soil forming processes as indicators of forest ecosystem functioning on a polluted dredged sediment landfill. Soil Biology and Biochemistry, 37, 761–769.CrossRefGoogle Scholar
  131. Vanguelova, E. I., Nortcliff, S., Moffat, A. J., & Kennedy, F. (2005). Morphology, biomass and nutrient status of fine roots of Scots pine (Pinus sylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant and Soil, 270, 233–247.CrossRefGoogle Scholar
  132. Vanguelova, E., Broadmeadow, S., Anderson, R., Yamulki, S., Randle, T., Nisbet, T., & Morison, J. (2012). A strategic assessment of afforested peat resources in Wales (141pp). Wales: Report for the Forestry Commission.http://fcnotes/pdf/Peatland_Wales_Report_2012.pdf/$FILE/Peatland_Wales_Report_2012.pdfGoogle Scholar
  133. Vanguelova, E. I., Nisbet, T. R., Moffat, A. J., Broadmeadow, S., Sanders, T. G. M., & Morison, J. I. L. (2013). A new evaluation of carbon stocks in British forest soils. Soil Use and Management, 29, 169–181.CrossRefGoogle Scholar
  134. Vanguelova, E. I. (2015). Changes in soil carbon stocks due to afforestation. Scottish Forestry Alliance Project. Interim report. Forest Research report, 21 October 2015.Google Scholar
  135. Vejre, H., Callesen, I., Vesterdal, L., & Raulund-Rasmussen, K. (2003). Carbon and nitrogen in Danish Forest soils—contents and distribution determined by soil order. Soil Science Society of America Journal, 67, 335–343.CrossRefGoogle Scholar
  136. Velmurugan, A., Krishan, G., Dadhwal, V. K., Kumar, S., Swarnam, T. P., & Saha, S. K. (2009). Harmonizing soil organic carbon estimates in historical and current data. Current Science, 97, 554–558.Google Scholar
  137. Vesterdal, L. (2011). Sampling of soil for assessment of soil carbon stocks. FunDivEUROPE (FP7) field protocol V1.0, Accessed 14 Oct 2016.
  138. Vesterdal, L., Schmidt, I. K., Callesen, I., Nilsson, L. O., & Gundersen, P. (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255, 35–48.CrossRefGoogle Scholar
  139. Vesterdal, L., Elberling, B., Christiansen, J. R., Callesen, I., & Schmidt, I. K. (2012). Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management, 264, 185–196.CrossRefGoogle Scholar
  140. Vincent, K. R., & Chadwick, O. A. (1994). Synthezising bulk density for soils with abundant rock fragments. Soil Science Society of America Journal, 58, 455–464.CrossRefGoogle Scholar
  141. Viro, P. (1952). On the determination of stoniness. Communications Instituti Forestalis Fenniae, 40, 23.Google Scholar
  142. Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.CrossRefGoogle Scholar
  143. Wang, X. J., Smethurst, P. J., & Herbert, A. M. (1996). Relationships between three measures of organic matter or carbon in soils of eucalypt plantations in Tasmania. Australian Journal of Soil Research, 34, 545–553.CrossRefGoogle Scholar
  144. Webster, K. L., Creed, I. F., Beall, F. D., & Bourbonnière, R. A. (2011). A topographic template for estimating soil carbon pools in forested catchments. Geoderma, 160, 457–467.CrossRefGoogle Scholar
  145. Wilding, L. P., Drees, L. R., & Nordt, L. C. (2000). Spatial variability: enhancing the mean estimate of organic and inorganic carbon in a sampling unit. In R. Lal, J. M. Kimble, R. F. Follett, & B. A. Stewart (Eds.), Assessment methods for soil carbon (pp. 69–86). Boca Raton, FL: CRC press.Google Scholar
  146. Wirth, C., Schwalbe, G., Tomczyk, S., Schulze, E.-D., Schumacher, J., Vetter, M., Böttcher, H., Weber, G., & Weller, G. (2004). Dynamik der Kohlenstoffvorräte und -flüsse in den Wäldern Thüringens. Mitteilungen der Thüringer Landesanstalt für Wald, Jagd und Fischerei in Zusammenarbeit mit dem Max-Planck-Institut für Biogeochemie, Heft 23. Jena, Gotha.Google Scholar
  147. Woldendorp, G., & Keenan, R. J. (2005). Coarse woody debris in Australian forest ecosystems: a review. Austral Ecology, 30, 834–843.CrossRefGoogle Scholar
  148. Yoo, K., Armundson, R., Heimsath, A. M., & Dietrich, W. E. (2006). Spatial patterns of soil organic carbon on hillslopes: integrating geomorphic processes and the biological C cycle. Geoderma, 130, 47–65.CrossRefGoogle Scholar
  149. Young, R., Wilson, B. R., McLeod, M., & Alston, C. (2005). Carbon storage in the soils and vegetation of contrasting land uses in northern New South Wales, Australia. Australian Journal of Soil Research, 43, 21–31.CrossRefGoogle Scholar
  150. Zirlewagen, D. (2003). Developing a sampling concept for the test area Thuringia with regard to the particular (existing) data base situation. Kenzingen, 2003 (unpublished CarboInvent report).Google Scholar

Copyright information

© Crown Copyright as represented by: Forest Research, Forestry Commission, UK 2016

Authors and Affiliations

  • E. I. Vanguelova
    • 1
    Email author
  • E. Bonifacio
    • 2
  • B. De Vos
    • 3
  • M. R. Hoosbeek
    • 4
  • T. W. Berger
    • 5
  • L. Vesterdal
    • 6
  • K. Armolaitis
    • 7
  • L. Celi
    • 2
  • L. Dinca
    • 8
  • O. J. Kjønaas
    • 9
  • P. Pavlenda
    • 10
  • J. Pumpanen
    • 11
  • Ü. Püttsepp
    • 12
  • B. Reidy
    • 13
  • P. Simončič
    • 14
  • B. Tobin
    • 15
  • M. Zhiyanski
    • 16
  1. 1.Centre for Ecosystems, Society and Biosecurity, Forest Research, Alice Holt LodgeFarnhamUK
  2. 2.DISAFA, Chimica Agraria e PedologiaUniversity of TorinoGrugliascoItaly
  3. 3.Environment & Climate UnitResearch Institute for Nature and Forest (INBO)GeraardsbergenBelgium
  4. 4.Department of Soil QualityWageningen UniversityWageningenThe Netherlands
  5. 5.Department of Forest- and Soil Sciences, Institute of Forest EcologyUniversity of Natural Resources and Live Sciences (BOKU)ViennaAustria
  6. 6.Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenFrederiksbergDenmark
  7. 7.Department of EcologyInstitute of Forestry, Lithuanian Research Centre for Agriculture and ForestryGirionysLithuania
  8. 8.National Institute for Research and Development in Forestry “Marin Dracea”BrasovRomania
  9. 9.Norwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway
  10. 10.National Forest Centre - Forest Research InstituteZvolenSlovakia
  11. 11.Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
  12. 12.Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
  13. 13.School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland
  14. 14.Forest Ecology DepartmentSlovenian Foresty InstituteLjubljanaSlovenia
  15. 15.UCD Forestry, School of Agriculture and Food ScienceUniversity College DublinDublin 4Ireland
  16. 16.Forest Research Institute – BAS 132SofiaBulgaria

Personalised recommendations