Climate perceptions of local communities validated through scientific signals in Sikkim Himalaya, India



Sikkim, a tiny Himalayan state situated in the north-eastern region of India, records limited research on the climate change. Understanding the changes in climate based on the perceptions of local communities can provide important insights for the preparedness against the unprecedented consequences of climate change. A total of 228 households in 12 different villages of Sikkim, India, were interviewed using eight climate change indicators. The results from the public opinions showed a significant increase in temperature compared to a decade earlier, winters are getting warmer, water springs are drying up, change in concept of spring-water recharge (locally known as Mul Phutnu), changes in spring season, low crop yields, incidences of mosquitoes during winter, and decrease in rainfall in last 10 years. In addition, study also showed significant positive correlations of increase in temperature with other climate change indicators viz. spring-water recharge concept (R2 = 0.893), warmer winter (R2 = 0.839), drying up of water springs (R2 = 0.76), changes in spring season (R2 = 0.68), low crop yields (R2 = 0.68), decrease in rainfall (R2 = 0.63), and incidences of mosquitoes in winter (R2 = 0.50). The air temperature for two meteorological stations of Sikkim indicated statistically significant increasing trend in mean minimum temperature and mean minimum winter temperature (DJF). The observed climate change is consistent with the people perceptions. This information can help in planning specific adaptation strategies to cope with the impacts of climate change by framing village-level action plan.


Climate change People perceptions Increase in temperature Mann-Kendall statistics Sikkim Himalaya 


  1. Adesiji, G. B., Matanmi, B. M., Onikoyi, M. P., & Saka, M. A. (2012). Farmers’ perception of climate change in Kwara state, Nigeria. World Rural Observ, 4(2), 46–54 Scholar
  2. Bajracharya, S. R., & Shrestha, B. (2011). The status of glaciers in the Hindu Kush-Himalayan region. Kathmandu: International Centre for Integrated Mountain Development (ICIMOD).Google Scholar
  3. Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of warming climate on water availability in snow-dominated regions. Nature, 438(04141), 306.Google Scholar
  4. Bolch, T., Kulkarni, A. V., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., & Stoffel, M. (2012). The state and fate of Himalayan glaciers. Science. doi:10.1126/science.1215828.Google Scholar
  5. Chaudhary, P., & Bawa, K. S. (2011). Local perceptions of climate change validated by scientific evidence in the Himalayas. Biology Letters. doi:10.1098/rsbl.2011.0269.Google Scholar
  6. Chaudhary, P., Rai, S., Wangdi, S., Mao, A., Rehman, N., Chettri, S., et al. (2011). Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Current Science, 101(4), 504–512.Google Scholar
  7. Chettri, N., Sharma, E., Shakya, B., Thapa, R., Bajracharya, B., Uddin, K., Oli, K. P., & Choudhury, D. (2010). Biodiversity in the eastern Himalayas: status, trends and vulnerability to climate change. Climate change impact and vulnerability in the eastern Himalayas—technical report 2 (p. 7). Kathmandu: ICIMOD.Google Scholar
  8. Duerden, F. (2005). Translating climate change impacts at the community level. Arctic, 57(2), 204–212.Google Scholar
  9. Fitter, A. H., & Fitter, R. S. R. (2002). Rapid changes in flowering time in British plants. Science, 296, 1689–1691.CrossRefGoogle Scholar
  10. Freiwan, M., & Kadioglu, M. (2008). Climate variability in Jordan. International Journal of Climatology. doi:10.1002/joc.Google Scholar
  11. Gardelle, J., Berthier, E., Arnaud, Y., & Kääb, A. (2013). Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. The Cryosphere. doi:10.5194/tc-7-1263-2013.Google Scholar
  12. Garg, V., & Jothiprakash, V. (2012). Sediment yield assessment of a large basin using PSIAC approach in GIS environment. Water Resources Management. doi:10.1007/s11269-011-9945-4.Google Scholar
  13. Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York: Van Nostrand Reinhold Company.Google Scholar
  14. Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science. doi:10.1126/science.1132027.Google Scholar
  15. Gupta, R. C., & Das, M. (2006). Recent trends in temperature (cold wave conditions) and rainfall over Gangtok city. Letters to the editor. Mausam, 57(3), 511–512.Google Scholar
  16. Harsch, M. A., Hulme, P. E., McGlone, M. S., & Duncan, R. P. (2009). Are tree lines advancing? A global meta-analysis of tree line response to climate warming. Ecology Letters. doi:10.1111/j.1461-0248.2009.01355.x.Google Scholar
  17. Hartter, J., Stampone, M. D., Ryan, S. J., Kirner, K., Chapman, C. A., et al. (2012). Patterns and perceptions of climate change in a biodiversity conservation hotspot. PloS One. doi:10.1371/journal.pone.0032408.Google Scholar
  18. Immerzeel, W. W., Ludovicus, V. B. P. H., & Bierkens, M. F. P. (2010). Climate change will affect the Asian water towers. Science. doi:10.1126/science.1183188.Google Scholar
  19. IPCC. (2007). Summary for Policymakers. In Climate Change 2007: Climate Change Impacts, Adaptation and Vulnerability. Working Group II Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report.Google Scholar
  20. IPCC (2014). In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.), Climate change 2014: synthesis report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental panel on Climate Change. Geneva: IPCC 151 pp.Google Scholar
  21. Islam, M. M., Sallu, S., Hubacek, K., & Paavola, J. (2014). Vulnerability of fishery-based livelihoods to the impacts of climate variability and change: insights from coastal Bangladesh. Regional Environmental Change. doi:10.1007/s10113-013-0487-6.Google Scholar
  22. Jaagus, J. (2006). Climatic changes in Estonia during the second half of the twentieth century in relationship with changes in large-scale atmospheric circulation. Theoretical and Applied Climatology, 83, 77–88.CrossRefGoogle Scholar
  23. Jain, S. K., Singh, P., Saraf, A. K., & Seth, S. M. (2003). Estimation of sediment yield for a rain, snow and glacier fed river in the western Himalayan region. Water Resources Management. doi:10.1023/A: 1025804419958.Google Scholar
  24. Joshi, A. K., & Joshi, P. K. (2011). A rapid inventory of indicators of climate change in the middle Himalaya. Current Science, 100(6), 831.Google Scholar
  25. Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature. doi:10.1038/nature11324.Google Scholar
  26. Kendall, M. G. (1975). Rank correlation methods. London: Griffin.Google Scholar
  27. Liu, X., & Chen, B. (2000). Climatic warming in the Tibetan plateau during recent decades. International Journal of Climatology, 20, 1729–1742.CrossRefGoogle Scholar
  28. Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change. doi:10.1038/nclimate1043.Google Scholar
  29. Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., & Bierkens, M. F. P. (2014). Consistent increase in high Asia’s runoff due to increasing glacier melt and precipitation. Nature Climate Change. doi:10.1038/nclimate2237.Google Scholar
  30. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.CrossRefGoogle Scholar
  31. McHugh, M. L. (2013). The Chi-square test of independence, lessons in biostatistics. Biochemia Medica. doi:10.11613/BM.2013.018.Google Scholar
  32. Mendenhall, W., Beaver, R. J., & Beaver, B. M. (2003). Introduction to probability and statistics. Brooks/Cole, a division of Thomson Learning, Inc., ISBN 0-534-39519-8.Google Scholar
  33. Moller, H., Berkes, F., Lyver, P. O., & Kislalioglu, M. (2004). ). Combining science and traditional ecological knowledge: monitoring populations for co-management. Ecology and Society, 9(3), 2 .OnlineURL: Google Scholar
  34. Onoz, B., & Bayazit, M. (2003). The power of statistical tests for trend detection. Turkish Journal of Engineering & Environmental Sciences, 27, 247–251.Google Scholar
  35. Patzl, J. A., Campbell-Lendrum, D., Holloway, T., & Foley, J. A. (2005). Impact of regional climate change on human health. Nature, 438, 310–317.CrossRefGoogle Scholar
  36. Rahman, H., Karuppaiyan, R., Senapati, P. C., Ngachan, S. V., & Kumar, A. (2012). An analysis of past three decade weather phenomenon in the Mid-hills of Sikkim and strategies for mitigating possible impact of climate change on agriculture. In Arrawatia, M. L., & Sandeep, T. (Ed.), Climate change in sikkim - patterns, impacts and initiatives (pp 19–48). Information and Public Relation Department, Govt. of Sikkim.Google Scholar
  37. Rashid, I., Romshoo, S. A., Chaturvedi, R. K., Rabindranath, N. H., Sukumar, R., Jayaraman, M., et al. (2015). Projected climate change impacts on vegetation distribution over Kashmir Himalayas. Climatic Change. doi:10.1007/s10584-015-1456-5.Google Scholar
  38. Rayner, J. C. W., & Best, D. J. (1989). Smooth tests of goodness of fit. New York: Oxford University Press, Inc. ISBN 0-19-505610-8.Google Scholar
  39. Rupa, K., Pant, G. B., Parthasarathy, B., & Sontakke, N. A. (1992). Spatial and sub-seasonal patterns of the long term trends of Indian summer monsoon rainfall. International Journal of Climatology, 12, 257–268.CrossRefGoogle Scholar
  40. Saju, K. A., Mech, S., Deka, T. N., Gupta, U., Biswas, A. K., & Sudharshan, M. R. (2013). Yield loss of large cardamom (Amomum subulatum Roxb.) due to Colletotrichum blight in Sikkim. Journal of Spices and Aromatic Crops, 22(2), 215–218.Google Scholar
  41. Sen, P. K. (1968). Estimation of regression co-efficients based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389.CrossRefGoogle Scholar
  42. Sharma, E., Chettri, N., Tse-ring, K., Shrestha, A. B., Jing, F., Mool, P., & Eriksson, M. (2009). Climate change impacts and vulnerability in the eastern Himalayas (pp. 5–6). Kathmandu: ICIMOD.Google Scholar
  43. Shea, J. M., Immerzeel, W. W., Wagnon, P., Vincent, C., & Bajracharya, S. (2015). Modelling glacier change in the Everest region, Nepal Himalaya. Cryosphere. doi:10.5194/tc-9-1105-2015.Google Scholar
  44. Shrestha, U. B., Gautam, S., & Bawa, K. S. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PloS One. doi:10.1371/journal.pone.0036741.Google Scholar
  45. Sikkim Primary Census Abstract. (2011). Census of India. Directorate of Census Operations, Sikkim.Google Scholar
  46. Tabari, H., Marofi, S., Aeini, A., Talaee, P. H., & Mohammadi, K. (2011). Trend analysis of reference evapotranspiration in the western half of Iran. Agricultural and Forest Meteorology, 151, 128–136.CrossRefGoogle Scholar
  47. Telwala, Y., Brook, B. W., Manish, K., & Pandit, M. K. (2013). Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PloS One. doi:10.1371/journal.pone.0057103.Google Scholar
  48. The Sikkim State Action Plan on Climate Change-Report. (2014). Published by Government of Sikkim.Google Scholar
  49. Tse-ring, K., Sharma, E., Chettri, N., & Shrestha, A. (2010). Climate change vulnerability of mountain ecosystems in the eastern Himalayas; climate change impact and vulnerability in the eastern Himalayas—synthesis report (p. 6). Kathmandu: ICIMOD.Google Scholar
  50. Vedwan, N., & Rhoades, R. E. (2001). Climate change in the western Himalayas of India: a study of local perception and response. Climate Research. doi:10.3354/cr019109.Google Scholar
  51. Xu, J., & Grumbine, R. E. (2014). Building ecosystem resilience for climate change adaptation in the Asian highlands. WIREs Climate Change. doi:10.1002/wcc.302.Google Scholar
  52. Yu, Y. S., Zou, S., & Whittemore, D. (1993). Non parametric trend analysis of water quality data of rivers in Kansas. Journal of Hydrology, 150, 61–80.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.State Climate Change Cell, Sikkim State Council of Science and TechnologyVigyan BhawanGangtokIndia

Personalised recommendations