Investigation of temporal change in glacial extent of Chitral watershed using Landsat data: a critique

  • Irfan Rashid
  • Tariq Abdullah


Himalayan glaciers are showing consistent signs of recession similar to glaciers elsewhere in the world with the exception of slight mass gain or stability in Karakoram. Deficient knowledge regarding the processes controlling the glacier dynamics together with remoteness, rugged terrain, insufficient in situ measurements, unsuitable datasets, and scanty network of meteorological stations has always been a big challenge in projecting future glacier dynamics in the region. Here, we present a number of scientific concerns regarding the appropriateness of data sets and methods adopted by a study carried out by Naeem et al. (2016), published in the journal of Environmental Monitoring and Assessment to investigate and project glacier dynamics in Chitral watershed using Landsat data. The use of predominantly snow and cloud covered satellite images especially for 2006 and 2007 strongly questions the glacier fluctuation estimates put forth by the authors. The inferences from existing scientific literature suggesting robustness of semi-automatic methods for glacier mapping challenge the use of unsupervised classification approach for delineating glacier extents as adopted in Naeem et al. (2016). Considering the scientific concerns and loopholes in the study by Naeem et al. (2016), the glacier fluctuations in Chitral watershed need to be reassessed.


Glacier mapping Glacier dynamics Chitral watershed Classification approach 



The authors express gratitude to anonymous reviewers for their valuable comments and suggestions on the earlier version of the manuscript that greatly improved the content and structure of this manuscript.


  1. Akhtar, M., Ahmad, N., & Booij, M. J. (2008). The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. Journal of Hydrology, 355(1), 148–163.CrossRefGoogle Scholar
  2. Bajracharya, S. R., & Shrestha, B. (2011). The status of glaciers in the Hindu Kush-Himalayan region. International Centre for Integrated Mountain Development (Kathmandu:ICIMOD). ISBN:9789291152155Google Scholar
  3. Bajracharya, S. R., Maharjan, S. B., & Shrestha, F. (2014a). The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data. Annals of Glaciology, 55(66), 159–166.CrossRefGoogle Scholar
  4. Bajracharya, S. R., Maharjan, S. B., Shrestha, F., Bajracharya, O. R. & Baidya, S. (2014b) Glacier status in Nepal and decadal change from 1980 to 2010 based on Landsat data (pp. 88). International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal.Google Scholar
  5. Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., & Chevallier, P. (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment, 108(3), 327–338.Google Scholar
  6. Bhambri, R., & Bolch, T. (2009). Glacier mapping: a review with special reference to the Indian Himalayas. Progress in Physical Geography, 33(5), 672–704.Google Scholar
  7. Bhutiyani, M. R. (2015). Climate Change in the Northwestern Himalayas. In Dynamics of Climate Change and Water Resources of Northwestern Himalaya (pp. 85–96). Springer International PublishingGoogle Scholar
  8. Bishop, M., John, F. S., Ghazanfar, A., Andrew, B. G. B., Umesh, K. H., Rakhshan, R., Mehmet, A. S., & Brandon, J. W. (2014). Remote sensing of glaciers in Afghanistan and Pakistan. In J. S. Kargel, G. J. Leonard, M. P. Bishop, A. Kääb, & B. Raup (Eds.), Global land ice measurements from space (pp. 509–545). Berlin Heidelberg: Springer-Verlag.Google Scholar
  9. Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Khan, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., & Bajracharya, S. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314.CrossRefGoogle Scholar
  10. Cogley, J. G. (2011). Present and future states of Himalaya and Karakoram glaciers. Annals of Glaciology, 52(59), 69–73.CrossRefGoogle Scholar
  11. Cogley, J. G., Kargel, J. S., Kaser, G., & Van der Veen, C. J. (2010). Tracking the source of glacier misinformation. Science, 327(5965), 522.CrossRefGoogle Scholar
  12. Dar, R. A., Rashid, I., Romshoo, S. A., & Marazi, A. (2014). Sustainability of winter tourism in a changing climate over Kashmir Himalaya. Environmental Monitoring and Assessment, 186(4), 2549–2562.CrossRefGoogle Scholar
  13. Gardelle, J., Berthier, E., Arnaud, Y., & Kaab, A. (2013). Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. The Cryosphere, 7(6), 1885–1886.CrossRefGoogle Scholar
  14. Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S. R. M., Bolch, T., Martin, J., Sharp, M. J., Hagen, J. O., van den Broeke, M. R., & Paul, F. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852–857.CrossRefGoogle Scholar
  15. Guo, W., Liu, S., Xu, J., Wu, L., Shangguan, D., Yao, X., Wei, J., Bao, W., Yu, P., Liu, Q., & Jiang, Z. (2015). The second Chinese glacier inventory: data, methods and results. Journal of Glaciology, 61(226), 357–372.CrossRefGoogle Scholar
  16. Immerzeel, W. W., Van Beek, L. P. H., Konz, M., Shrestha, A. B., & Bierkens, M. F. P. (2012). Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change, 110(3–4), 721–736.CrossRefGoogle Scholar
  17. IPCC. (2007). Summary for Policymakers. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 7–22). Cambridge: Cambridge University Press.Google Scholar
  18. Jóhannesson, T., Raymond, C., & Waddington, E. D. (1989). Time-scale for adjustment of glaciers to changes in mass balance. Journal of Glaciology, 35(121), 355–369.Google Scholar
  19. Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495–498.CrossRefGoogle Scholar
  20. Khan, A., Naz, B. S., & Bowling, L. C. (2015). Separating snow, clean and debris covered ice in the upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002. Journal of Hydrology, 521, 46–64.CrossRefGoogle Scholar
  21. Li, J., & Sheng, Y. (2012). An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: a case study in the Himalayas. International Journal of Remote Sensing, 33(16), 5194–5213.Google Scholar
  22. Li, H., Xu, C. Y., Beldring, S., Tallaksen, L. M., & Jain, S. K. (2015). Water resources under climate change in Himalayan basins. Water Resources Management, 1–17. doi: 10.1007/s11269-015-1194-5.
  23. Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., & Bierkens, M. F. P. (2014). Consistent increase in high Asia's runoff due to increasing glacier melt and precipitation. Nature Climate Change, 4(7), 587–592.CrossRefGoogle Scholar
  24. Ming, J., Xiao, C., Du, Z., & Yang, X. (2013). An overview of black carbon deposition in high Asia glaciers and its impacts on radiation balance. Advances in Water Resources, 55, 80–87.CrossRefGoogle Scholar
  25. Murtaza, K. O., & Romshoo, S. A. (2015). Recent glacier changes in the Kashmir Alpine Himalayas. India. Geocarto International. doi: 10.1080/10106049.2015.1132482.Google Scholar
  26. Naeem, U. A., Shamim, M. A., Ejaz, N., Ur Rehman, H., Mustafa, U., Hashmi, H. N., & Ghumman, A. R. (2016). Investigation of temporal change in glacial extent of Chitral watershed using Landsat data. Environmental Monitoring and Assessment, 188(1), 1–13.CrossRefGoogle Scholar
  27. Nair, V. S., Babu, S. S., Moorthy, K. K., Sharma, A. K., & Marinoni, A. (2013). Black carbon aerosols over the Himalayas: direct and surface albedo forcing. Tellus B, 65, 19738. doi: 10.3402/tellusb.v65i0.19738.CrossRefGoogle Scholar
  28. Nakawo, M., Yabuki, H., & Sakai, A. (1999). Characteristics of Khumbu glacier, Nepal Himalaya: recent change in the debris-covered area. Annals of Glaciology, 28(1), 118–122.CrossRefGoogle Scholar
  29. Nuimura, T., Sakai, A., Taniguchi, K., Nagai, H., Lamsal, D., Tsutaki, S., Kozawa, A., Hoshina, Y., Takenaka, S., Omiya, S., Tsunematsu, K., Tshering, P., & Fujita, K. (2015). The GAM-DAM glacier inventory: a quality-controlled inventory of Asian glaciers. The Cryosphere, 9(3), 849–864.CrossRefGoogle Scholar
  30. Paul, F., Huggel, C., & Kääb, A. (2004). Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment, 89(4), 510–518.CrossRefGoogle Scholar
  31. Paul, F., Barry, R. G., Cogley, J. G., Frey, H., Haeberli, W., Ohmura, A., Ommanney, C. S. L., Raup, B., Rivera, A., & Zemp, M. (2010). Recommendations for the compilation of glacier inventory data from digital sources. Annals of Glaciology, 50(53), 119–126.CrossRefGoogle Scholar
  32. Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S. P., Konovalov, V., Le Bris, R., Mölg, N., Nosenko, G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K., Steffen, S., & Winsvold, S. (2013). On the accuracy of glacier outlines derived from remote-sensing data. Annals of Glaciology, 54(63), 171–182.CrossRefGoogle Scholar
  33. Pelto, M. S., & Hedlund, C. (2001). Terminus behavior and response time of North Cascade glaciers, Washington, USA. Journal of Glaciology, 47(158), 497–506.CrossRefGoogle Scholar
  34. Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radic, V., Rast-ner, P., Raup, B. H., Rich, J., Sharp, M. J., & the Randolph Consortium (2014). The Randolph glacier inventory: a globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537–552.CrossRefGoogle Scholar
  35. Racoviteanu, A. E., Williams, M. W., & Barry, R. G. (2008). Optical remote sensing of glacier characteristics: a review with focus on the Himalaya. Sensors, 8(5), 3355–3383.CrossRefGoogle Scholar
  36. Robson, B. A., Nuth, C., Dahl, S. O., Hölbling, D., Strozzi, T., & Nielsen, P. R. (2015). Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sensing of Environment, 170, 372–387.CrossRefGoogle Scholar
  37. Romshoo, S. A., Dar, R. A., Rashid, I., Marazi, A., Ali, N., & Zaz, S. N. (2015). Implications of shrinking cryosphere under changing climate on the streamflows in the Lidder catchment in the upper Indus Basin, India. Arctic, Antarctic, and Alpine Research, 47(4), 627–644.CrossRefGoogle Scholar
  38. Sarikaya, M. A., Bishop, M. P., Shroder, J. F., & Olsenholler, J. A. (2012). Space-based observations of eastern Hindu Kush glaciers between 1976 and 2007, Afghanistan and Pakistan. Remote Sensing Letters, 3(1), 77–84.CrossRefGoogle Scholar
  39. Shrestha, A. B., & Aryal, R. (2011). Climate change in Nepal and its impact on Himalayan glaciers. Regional Environmental Change, 11(1), 65–77.CrossRefGoogle Scholar
  40. Shukla, A., Arora, M. K., & Gupta, R. P. (2010). Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters. Remote Sensing of Environment, 114(7), 1378–1387.CrossRefGoogle Scholar
  41. Wang, W., Xiang, Y., Gao, Y., Lu, A., & Yao, T. (2015). Rapid expansion of glacial lakes caused by climate and glacier retreat in the central Himalayas. Hydrological Processes, 29(6), 859–874.CrossRefGoogle Scholar
  42. Xu, Y., Ramanathan, V., & Washington, W. M. (2015). Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols. Atmospheric Chemistry and Physics Discussions, 15(13), 19079–19109.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of KashmirHazratbal SrinagarIndia

Personalised recommendations