Google Street View as an alternative method to car surveys in large-scale vegetation assessments

  • Ernesto DeusEmail author
  • Joaquim S. Silva
  • Filipe X. Catry
  • Miguel Rocha
  • Francisco Moreira


Car surveys (CS) are a common method for assessing the distribution of alien invasive plants. Google Street View (GSV), a free-access web technology where users may experience a virtual travel along roads, has been suggested as a cost-effective alternative to car surveys. We tested if we could replicate the results from a countrywide survey conducted by car in Portugal using GSV as a remote sensing tool, aiming at assessing the distribution of Eucalyptus globulus Labill. wildlings on roadsides adjacent to eucalypt stands. Georeferenced points gathered along CS were used to create road transects visible as lines overlapping the road in GSV environment, allowing surveying the same sampling areas using both methods. This paper presents the results of the comparison between the two methods. Both methods produced similar models of plant abundance, selecting the same explanatory variables, in the same hierarchical order of importance and depicting a similar influence on plant abundance. Even though the GSV model had a lower performance and the GSV survey detected fewer plants, additional variables collected exclusively with GSV improved model performance and provided a new insight into additional factors influencing plant abundance. The survey using GSV required ca. 9 % of the funds and 62 % of the time needed to accomplish the CS. We conclude that GSV may be a cost-effective alternative to CS. We discuss some advantages and limitations of GSV as a survey method. We forecast that GSV may become a widespread tool in road ecology, particularly in large-scale vegetation assessments.


Road ecology Roadside Alien invasive plants Eucalypt Wildling Remote sensing 



This research was funded by Fundação para a Ciência e a Tecnologia (FCT) in the frame of project “WildGum—a multi-scale approach to study the naturalization of blue gum (Eucalyptus globulus Labill.) in Portugal” (FCT PTDC/AGR-FOR/2471/2012); E.D. was supported by a doctoral grant (PB/BD/113936/2015); F.X.C. was supported by a postdoctoral grant (SFRH/BPD/93373/2013); and FM was funded by the REN Biodiversity Chair and FCT (IF/01053/2015).

Supplementary material

10661_2016_5555_MOESM1_ESM.pdf (35 kb)
ESM 1 (PDF 34.5 KB)
10661_2016_5555_MOESM2_ESM.pdf (316 kb)
ESM 2 (PDF 315 KB)
10661_2016_5555_MOESM3_ESM.pdf (47 kb)
ESM 3 (PDF 47.0 KB)
10661_2016_5555_MOESM4_ESM.pdf (25 kb)
ESM 4 (PDF 24.8 KB)


  1. Abella, S. R., Spencer, J. E., Hoines, J., & Nazarchyk, C. (2009). Assessing an exotic plant surveying program in the Mojave Desert, Clark County, Nevada, USA. Environmental Monitoring and Assessment, 151(1–4), 221–230. doi: 10.1007/s10661-008-0263-0.CrossRefGoogle Scholar
  2. Águas, A., Ferreira, A., Maia, P., Fernandes, P. M., Roxo, L., Keizer, J., et al. (2014). Natural establishment of Eucalyptus globulus Labill. in burnt stands in Portugal. Forest Ecology and Management, 323, 47–56. doi: 10.1016/j.foreco.2014.03.012.CrossRefGoogle Scholar
  3. Albuquerque, J. P. M. (1954). Carta Ecológica de Portugal. Lisboa: Ministério da Economia, Direcção Geral dos Serviços Agrícolas.Google Scholar
  4. Almeida, M. H., Chaves, M. M., & Silva, J. C. (1994). Cold acclimation in eucalypt hybrids. Tree Physiology, 14, 921–932. doi: 10.1093/treephys/14.7-8-9.921.CrossRefGoogle Scholar
  5. Amor, R. L., & Stevens, P. L. (1976). Spread of weeds from a roadside into sclerophyll forests at Dartmouth, Australia. Weed Research, 16(2), 111–118. doi: 10.1111/j.1365-3180.1976.tb00388.x.CrossRefGoogle Scholar
  6. Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon, S., Lyon, R., et al. (2010). Google Street View: capturing the world at street level. Computer, 43(6), 32–38. doi: 10.1109/MC.2010.170.CrossRefGoogle Scholar
  7. Bivand, R., & Piras, G. (2015). Comparing implementations of estimation methods for spatial econometrics. Journal of Statistical Software, 63(18), 1–36.CrossRefGoogle Scholar
  8. Bivand, R., Hauke, J., & Kossowski, T. (2013). Computing the Jacobian in Gaussian spatial autoregressive models: an illustrated comparison of available methods. Geographical Analysis, 45(2), 150–179. doi: 10.1111/gean.12008.CrossRefGoogle Scholar
  9. Bjørnstad, O., & Falck, W. (2001). Nonparametric spatial covariance functions: estimation and testing. Environmental and Ecological Statistics, 8, 53–70. doi: 10.1023/A:1009601932481.CrossRefGoogle Scholar
  10. Buhlea, E. R., Margolis, M., & Ruesink, J. L. (2005). Bang for buck: cost-effective control of invasive species with different life histories. Ecological Economics, 52(3), 355–366. doi: 10.1016/j.ecolecon.2004.07.018.CrossRefGoogle Scholar
  11. Buston, P. M., & Elith, J. (2011). Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. Journal of Animal Ecology, 80(3), 528–538. doi: 10.1111/j.1365-2656.2011.01803.x.CrossRefGoogle Scholar
  12. Calviño-Cancela, M., & Rubido-Bará, M. (2013). Invasive potential of Eucalyptus globulus: seed dispersal, seedling recruitment and survival in habitats surrounding plantations. Forest Ecology and Management, 305(1), 129–137. doi: 10.1016/j.foreco.2013.05.037.CrossRefGoogle Scholar
  13. Catry, F. X., Moreira, F., Tujeira, R., & Silva, J. S. (2013). Post-fire survival and regeneration of Eucalyptus globulus in forest plantations in Portugal. Forest Ecology and Management, 310, 194–203. doi: 10.1016/j.foreco.2013.08.036.CrossRefGoogle Scholar
  14. Catry, F. X., Moreira, F., Deus, E., Silva, J. S., & Águas, A. (2015). Assessing the extent and the environmental drivers of Eucalyptus globulus wildling establishment in Portugal: results from a countrywide survey. Biological Invasions, 17(11), 3163–3181. doi: 10.1007/s10530-015-0943-y.CrossRefGoogle Scholar
  15. Christen, D., & Matlack, G. (2006). The role of roadsides in plant invasions: a demographic approach. Conservation Biology, 20(2), 385–391. doi: 10.1111/j.1523-1739.2006.00315.x.CrossRefGoogle Scholar
  16. Crase, B., Liedloff, A. C., & Wintle, B. A. (2012). A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography, 35, 879–888. doi: 10.1111/j.1600-0587.2011.07138.x.CrossRefGoogle Scholar
  17. Cremer, K. W. (1965). How eucalypt fruits release their seed. Australian Journal of Botany, 13(1), 11–16. doi: 10.1071/BT9650011.CrossRefGoogle Scholar
  18. Cremer, K. W. (1977). Distance of seed dispersal in eucalypts estimated from seed weights. Australian. Forest Research, 7, 225–228.Google Scholar
  19. Davis, M. A., Grime, J. P., & Thompson, K. (2000). Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology, 88(3), 528–534. doi: 10.1046/j.1365-2745.2000.00473.x.CrossRefGoogle Scholar
  20. De’ath, G. (2007). Boosted trees for ecological modeling and prediction. Ecology, 88(1), 243–251. doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2.CrossRefGoogle Scholar
  21. Doménech, R., Vilà, M., Pino, J., & Gesti, J. (2005). Historical land-use legacy and Cortaderia selloana invasion in the Mediterranean region. Global Change Biology, 11, 1054–1064. doi: 10.1111/j.1365-2486.2005.00965.x.CrossRefGoogle Scholar
  22. Drasgow, F. (1986). Polychoric and polyserial correlations. In S. Kotz & N. Johnson (Eds.), The encyclopedia of statistics (Vol. vol. 7, pp. 68–74). Wiley.Google Scholar
  23. Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802–813. doi: 10.1111/j.1365-2656.2008.01390.x.CrossRefGoogle Scholar
  24. Forman, R. T. T., & Alexander, L. (1998). Roads and their major ecological effects. Annual Review of Ecology and Systematics, 29, 207–231. doi: 10.1146/annurev.ecolsys.29.1.207.CrossRefGoogle Scholar
  25. Fortin, M. J., & Dale, M. (2005). Spatial analysis. A guide for ecologists. Cambridge: Cambridge University Press.Google Scholar
  26. Fox, J. (2010). R package polycor: polychoric and polyserial correlations, v. 0.7–8. Accessed Jan 2016.
  27. Gelbard, J. L., & Belnap, J. (2003). Roads as conduits for exotic plant invasions in a semiarid landscape. Conservation Biology, 17(2), 420–432. doi: 10.1046/j.1523-1739.2003.01408.x.CrossRefGoogle Scholar
  28. Gill, A. M. (1997). Eucalypts and fires: interdependent or independent? In J. E. Williams & J. C. Z. Woinarski (Eds.), Eucalypt ecology: individuals to ecosystems. Cambridge: Cambridge University Press.Google Scholar
  29. Google. (2015). Explore street view. Accessed Feb 2016.
  30. Hansen, M. J., & Clevenger, A. P. (2005). The influence of disturbance and habitat on the presence of non-native plant species along transport corridors. Biological Conservation, 125(2), 249–259. doi: 10.1016/j.biocon.2005.03.024.CrossRefGoogle Scholar
  31. Hoelzl, I., & Marie, R. (2014). Google Street View: navigating the operative image. Visual Studies, 29(3), 261–271. doi: 10.1080/1472586X.2014.941559.CrossRefGoogle Scholar
  32. Humara, J. M., Casares, A., & Majada, J. (2002). Effect of seed size and growing media water availability on early seedling growth in Eucalyptus globulus. Forest Ecology and Management, 167, 1–11. doi: 10.1016/S0378-1127(01)00697-1.CrossRefGoogle Scholar
  33. Jacobs, M. R. (1979). Eucalypts for planting. Forestry Series. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  34. Johnson, E. D. (1926). A comparison of the juvenile and adult leaves of Eucalyptus globulus. New Phytologist, 25, 202–212. doi: 10.1111/j.1469-8137.1926.tb06691.x.CrossRefGoogle Scholar
  35. Jordan, G. J., Borralho, N. M. G., Tilyard, P., & Potts, B. M. (1994). Identification of races in Eucalyptus globulus spp globulus based on growth traits in Tasmania and geographic distribution. Silvae Genetica, 43(5–6), 292–298.Google Scholar
  36. Kadmon, R., Farber, O., & Danin, A. (2004). Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecological Applications, 14(2), 401–413. doi: 10.1890/02-5364.CrossRefGoogle Scholar
  37. Kalkhan, M. A., & Stohlgren, T. J. (2000). Using multi-scale sampling and spatial cross-correlation to investigate patterns of plant species richness. Environmental Monitoring and Assessment, 64(3), 591–605. doi: 10.1023/a:1006329707198.CrossRefGoogle Scholar
  38. Kirkpatrick, J. B. (1975). Natural distribution of Eucalyptus globulus Labill. Australian Geographer, 13(1), 22–35. doi: 10.1080/00049187508702675.CrossRefGoogle Scholar
  39. Kirkpatrick, J. B. (1977). Eucalypt invasion in Southern California. Australian Geographer, 13(6), 387–393. doi: 10.1080/00049187708702717.CrossRefGoogle Scholar
  40. Larcombe, M. J., Silva, J. S., Vaillancourt, R. E., & Potts, B. M. (2013). Assessing the invasive potential of Eucalyptus globulus in Australia: quantification of wildling establishment from plantations. Biological Invasions, 15(12), 2763–2781. doi: 10.1007/s10530-013-0492-1.CrossRefGoogle Scholar
  41. Lorenzo, P., González, L., & Reigosa, M. J. (2010). The genus Acacia as invader: the characteristic case of Acacia dealbata link in Europe. Annals of Forest Science, 67(1). doi: 10.1051/forest/2009082.
  42. Mazerolle, D., & Blaney, S. (2010). Google Street View: a new online tool with potential application to roadside invasive species detection and monitoring. In E. Rindos (Ed.), 5th Biennial Weeds Across Borders Conference, Shepherdstown, USA, 2010 (pp. 77–83).Google Scholar
  43. McAvoy, T. J., Snyder, A. L., Johnson, N., Salom, S. M., & Kok, L. T. (2012). Road survey of the invasive tree-of-heaven (Ailanthus altissima) in Virginia. Invasive Plant Science and Management, 5(4), 506–512. doi: 10.1614/IPSM-D-12-00039.1.CrossRefGoogle Scholar
  44. Milton, S. J., & Dean, W. R. J. (1998). Alien plant assemblages near roads in arid and semi-arid South Africa. Diversity and Distributions, 4, 175–187. doi: 10.1046/j.1472-4642.1998.00024.x.CrossRefGoogle Scholar
  45. Norton, D. A., & Warburton, B. (2015). The potential for biodiversity offsetting to fund effective invasive species control. Conservation Biology, 29(1), 5–11. doi: 10.1111/cobi.12345.CrossRefGoogle Scholar
  46. Olea, P. P., & Mateo-Tomás, P. (2013). Assessing species habitat using Google Street View: a case study of cliff-nesting vultures. PloS One, 8(1), e54582. doi: 10.1371/journal.pone.0054582.CrossRefGoogle Scholar
  47. Olea, P. P., & Mateo-Tomás, P. (2016). Exploiting virtual globes for ecology and conservation in the Digital Earth era. Frontiers in Ecology and the Environment, 14(1), 11–12. doi: 10.1002/FEEOlealetter.1.CrossRefGoogle Scholar
  48. Olsen, A. R., & Schreuder, H. T. (1997). Perspectives on large-scale natural resource surveys when cause-effect is a potential issue. Environmental and Ecological Statistics, 4(2), 167–180. doi: 10.1023/a:1018522428238.CrossRefGoogle Scholar
  49. Orshan, G. (1989). Plant pheno-morphological studies in Mediterranean type ecosystems. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  50. Parendes, L. A., & Jones, J. A. (2000). Role of light availability and dispersal in exotic plant invasion along roads and streams in the H. J. Andrews experimental forest, Oregon. Conservation Biology, 14(1), 64–75. doi: 10.1046/j.1523-1739.2000.99089.x.CrossRefGoogle Scholar
  51. Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52, 273–288.CrossRefGoogle Scholar
  52. Potts, B. M., & Gore, P. (1995). Reproductive biology and controlled pollination of eucalyptus—a review. Hobart: School of Plant Science, University of Tasmania.Google Scholar
  53. Potts, B. M., Vaillancourt, R. E., Jordan, G., Dutkowski, G., Silva, J. C., McKinnon, G., et al. (2004). Exploration of the Eucalyptus globulus gene pool. In N. Borralho, J. S. Pereira, C. Marques, J. Coutinho, M. Madeira, & M. Tomé (Eds.), Eucalyptus in a changing world—IUFRO conference (pp. 46–61). Aveiro: RAIZ, Instituto Investigação de Floresta e Papel.Google Scholar
  54. Pyšek, P., Lambdon, P. W., Arianoutsou, M., Kühn, I., Pino, J., & Winter, M. (2009). Alien vascular plants of Europe. In Handbook of alien species in Europe (pp. 43–61). Dordrecht: Springer Netherlands.Google Scholar
  55. R Core Team. (2014). R: a language and environment for statistical computing.
  56. Richardson, D. M., Pyšek, P., Rejmánek, M., Barbour, M. G., Panetta, F. D., & West, C. J. (2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions, 6, 93–107.CrossRefGoogle Scholar
  57. Richardson, D. M., & Rejmánek, M. (2011). Trees and shrubs as invasive alien species—a global review. Diversity and Distributions, 17, 788–809. doi: 10.1111/j.1472-4642.2011.00782.x.CrossRefGoogle Scholar
  58. Ridgeway, G. (2009). R package gbm: generalized boosted regression models. Accessed Jan 2016.
  59. Rousselet, J., Imbert, C.-E., Dekri, A., Garcia, J., Goussard, F., Vincent, B., et al. (2013). Assessing species distribution using Google Street View: a pilot study with the pine processionary moth. PloS One, 8(10), e74918. doi: 10.1371/journal.pone.0074918.CrossRefGoogle Scholar
  60. Santos, P., Matias, H., Deus, E., Águas, A., & Silva, J. S. (2015). Fire effects on capsules and encapsulated seeds from Eucalyptus globulus in Portugal. Plant Ecology, 216(12), 1611–1621. doi: 10.1007/s11258-015-0544-y.CrossRefGoogle Scholar
  61. Shuster, W. D., Herms, C. P., Frey, M. N., Doohan, D. J., & Cardina, J. (2005). Comparison of survey methods for an invasive plant at the subwatershed level. Biological Invasions, 7, 393–403. doi: 10.1007/s10530-004-3904-4.CrossRefGoogle Scholar
  62. Silva, J. S., & Marchante, H. (2012). Post-fire management of exotic forests. In F. Moreira, M. Arianoutsou, P. Corona, & J. D. l. Heras (Eds.), Post-fire management and restoration of Southern European forests (vol. 24, pp. 223–255, Managing Forest Ecosystems). Dordrecht: Springer.Google Scholar
  63. Sladonja, B., Sušek, M., & Guillermic, J. (2015). Review on invasive tree of heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: assessment of its ecosystem services and potential biological threat. Environmental Management, 56(4), 1009–1034. doi: 10.1007/s00267-015-0546-5.CrossRefGoogle Scholar
  64. Stohlgren, T. J., Bull, K. A., & Otsuki, Y. (1998). Comparison of rangeland vegetation sampling techniques in the central grasslands. Journal of Range Management, 51(2), 164–172.CrossRefGoogle Scholar
  65. Stoneman, G. L. (1994). Ecology and physiology of establishment of eucalypt seedlings from seed: a review. Australian Forestry, 57(1), 11–29. doi: 10.1080/00049158.1994.10676109.CrossRefGoogle Scholar
  66. Taylor, K., Brummer, T., Taper, M. L., Wing, A., & Rew, L. J. (2012). Human-mediated long-distance dispersal: an empirical evaluation of seed dispersal by vehicles. Diversity and Distributions, 18(9), 1–10. doi: 10.1111/j.1472-4642.2012.00926.x.CrossRefGoogle Scholar
  67. Tomppo, E., Gschwantner, T., Lawrence, M., & McRoberts, R. E. (2010). National forest inventories: pathways for common reporting. Netherlands: Springer.CrossRefGoogle Scholar
  68. Trenberth, K. E. (1983). What are the seasons? Bulletin of the American Meteorological Society, 64(11), 1276–1282. doi: 10.1175/1520-0477(1983)064<1276:WATS>2.0.CO;2.CrossRefGoogle Scholar
  69. Trombulak, S. C., & Frissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14, 18–30. doi: 10.1046/j.1523-1739.2000.99084.x.CrossRefGoogle Scholar
  70. van Wilgen, B. W., Dyer, C., Hoffmann, J. H., Ivey, P., Le Maitre, D. C., Moore, J. L., et al. (2011). National-scale strategic approaches for managing introduced plants: insights from Australian acacias in South Africa. Diversity and Distributions, 17(5), 1060–1075. doi: 10.1111/j.1472-4642.2011.00785.x.CrossRefGoogle Scholar
  71. Velikova, V., Loreto, F., Brilli, F., Stefanov, D., & Yordanov, I. (2008). Characterization of juvenile and adult leaves of Eucalyptus globulus showing distinct heteroblastic development: photosynthesis and volatile isoprenoids. Plant Biology, 10(1), 55–64. doi: 10.1055/s-2007-964964.CrossRefGoogle Scholar
  72. Vicente, J., Alves, P., Randin, C., Guisan, A., & Honrado, J. (2010). What drives invasibility? A multi-model inference test and spatial modelling of alien plant species richness patterns in northern Portugal. Ecography, 33, 1081–1092. doi: 10.1111/j.1600-0587.2010.6380.x.CrossRefGoogle Scholar
  73. Visser, V., Langdon, B., Pauchard, A., & Richardson, D. M. (2014). Unlocking the potential of Google Earth as a tool in invasion science. Biological Invasions, 16, 513–534. doi: 10.1007/s10530-013-0604-y.CrossRefGoogle Scholar
  74. von der Lippe, M., Bullock, J. M., Kowarik, I., Knopp, T., & Wichmann, M. (2013). Human-mediated dispersal of seeds by the airflow of vehicles. PloS One, 8(1), e52733. doi: 10.1371/journal.pone.0052733.CrossRefGoogle Scholar
  75. Wilcox, D. A. (1989). Migration and control of purple loosestrife (Lythrum salicaria L.) along highway corridors. Environmental Management, 13(3), 365–370. doi: 10.1007/BF01874916.CrossRefGoogle Scholar
  76. Wilson, K. A., Underwood, E. C., Morrison, S. A., Klausmeyer, K. R., Murdoch, W. W., Reyers, B., et al. (2007). Conserving biodiversity efficiently: what to do, where, and when. PLoS Biology, 5(9), e223. doi: 10.1371/journal.pbio.0050223.CrossRefGoogle Scholar
  77. Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R (statistics for biology and health). New York: Springer.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  2. 2.Centre for Applied Ecology “Prof. Baeta Neves”, InBIO Associate Laboratory, School of AgricultureUniversity of LisbonLisboaPortugal
  3. 3.School of AgriculturePolytechnic Institute of CoimbraCoimbraPortugal
  4. 4.REN Biodiversity Chair, Research Centre in Biodiversity and Genetic Resources, InBIO Associate LaboratoryUniversity of PortoVairãoPortugal

Personalised recommendations