Estimating impacts of plantation forestry on plant biodiversity in southern Chile—a spatially explicit modelling approach

Article
  • 201 Downloads

Abstract

Monitoring the impacts of land-use practices is of particular importance with regard to biodiversity hotspots in developing countries. Here, conserving the high level of unique biodiversity is challenged by limited possibilities for data collection on site. Especially for such scenarios, assisting biodiversity assessments by remote sensing has proven useful. Remote sensing techniques can be applied to interpolate between biodiversity assessments taken in situ. Through this approach, estimates of biodiversity for entire landscapes can be produced, relating land-use intensity to biodiversity conditions. Such maps are a valuable basis for developing biodiversity conservation plans. Several approaches have been published so far to interpolate local biodiversity assessments in remote sensing data. In the following, a new approach is proposed. Instead of inferring biodiversity using environmental variables or the variability of spectral values, a hypothesis-based approach is applied. Empirical knowledge about biodiversity in relation to land-use is formalized and applied as ascription rules for image data. The method is exemplified for a large study site (over 67,000 km2) in central Chile, where forest industry heavily impacts plant diversity. The proposed approach yields a coefficient of correlation of 0.73 and produces a convincing estimate of regional biodiversity. The framework is broad enough to be applied to other study sites.

Keywords

Biodiversity hotspot Chile Plantation forestry Deforestation Spatially-explicit prediction Remote sensing 

References

  1. Aguayo, M., Pauchard, A., Azocar, G., & Parra, O. (2009). Land use change in the south Central Chile at the end of the twentieth century: understanding the spatio-temporal dynamics of the landscape. Revista Chilena de la Historia Natural, 82(3), 361–374.CrossRefGoogle Scholar
  2. Altamirano, A., Field, R., Cayuela, L., Aplin, P., Lara, A., & Rey-Benayas, J. M. (2010). Woody species diversity in temperate Andean forests: the need for new conservation strategies. Biological Conservation, 143(9), 2080–2091.CrossRefGoogle Scholar
  3. Barbier, E. B., Burgess, J. C., & Folke, C. (1994). Paradise lost? The ecological economics of biodiversity. London: Earthscan, Routledge.Google Scholar
  4. Braun, A. C. (2013). Eine fernerkundungsgestützte geoökologische Prozessanalyse zum Risikozusammenhang zwischen Landnutzung und Biodiversität an einem Beispiel aus Chile. Karlsruher Institute of Technology, KIT, Karlsruhe: PhD-Thesis.Google Scholar
  5. Braun, A. C., Weidner, U., & Hinz, S. (2010). Support vector machines for vegetation classification–a revision. Photogrammetrie-Fernerkundung-Geoinformation, 2010(4), 273–281.CrossRefGoogle Scholar
  6. Braun, A. C., Weidner, U., Jutzi, B., & Hinz, S. (2011). Integrating model knowledge into SVM classification–Fusing hyperspectral and laserscanning data by kernel composition. High-resolution earth imaging for geospatial information.–International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(4/W19).Google Scholar
  7. Braun, A. C., Weidner, U., Jutzi, B., & Hinz, S. (2012). Kernel composition with the one-against-one Cascade for integrating external knowledge into SVM classification. Photogrammetrie-Fernerkundung-Geoinformation, 2012(4), 371–384.CrossRefGoogle Scholar
  8. Braun, A. C., Rojas, C., Echeverria, C., Rottensteiner, F., Bähr, H. P., Niemeyer, J., Aguayo, M., Kosov, S., Hinz, S., & Weidner, U. (2014). Design of a spectral–spatial pattern recognition framework for risk assessments using Landsat data—a case study in Chile. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(3), 917–928.CrossRefGoogle Scholar
  9. Brook, B. W., Sodhi, N. S., & Ng, P. K. L. (2003). Catastrophic extinctions follow deforestation in Singapore. Nature, 424(6947), 420–426.CrossRefGoogle Scholar
  10. Brooks, T. M., Mittermeier, R. A., da Fonseca, G. A. B., Gerlach, J., Hoffmann, M., Lamoreux, J. F., Mittermeier, C. G., Pilgrim, J. D., & Rodrigues, A. S. L. (2006). Global biodiversity conservation priorities. Science, 313(5783), 58–61.CrossRefGoogle Scholar
  11. Bustamante, R. O., & Castor, C. (1998). The decline of an endangered temperate ecosystem: the ruil (Nothofagus alessandrii) forest in Central Chile. Biodiversity & Conservation, 7(12), 1607–1626.CrossRefGoogle Scholar
  12. Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A., Scherlemann, J. P. W., Almond, R. E. A., Baillie, J. W. M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K. E., Carr, G. M., Chanson, J., Chenery, A. M., Csirke, J., Davidson, N. C., Dentener, F., Foster, M., Galli, A., Galloway, J. N., Genovesi, P., Greory, R. D., Hockings, M., Kapos, V., Lamarque, J. F., Leverington, F., Loh, J., McGeoch, M. A., McRae, L., Minasyan, A., Hernandez Morcillo, M., Oldfield, T. E. E., Pauly, D., Quader, S., Revenga, C., Sauer, J. R., Skolnik, B., Spear, D., Stanwell-Smith, D., Stuart, S. N., Symes, A., Tierney, M., Tyrrell, T. D., Vie, J. C., & Watson, R. (2001). Global biodiversity: indicators of recent declines. Science, 328(5982), 1164–1168.CrossRefGoogle Scholar
  13. Camathias, L., Bergamini, A., Küchler, M., Stofer, S., & Baltensweiler, A. (2013). High-resolution remote sensing data improves models of species richness. Applied Vegetation Science, 16(4), 539–551.CrossRefGoogle Scholar
  14. Camus, P. (2003). Federico Albert: Artifice de la Gestion de los Bosques de Chile. Revista de Geografia Norte Grande, 30(2003), 55–63.Google Scholar
  15. Cayuela, L., Rey-Benayas, J. M., & Echeverria (2006). Clearance and fragmentation of tropical montane forests in the highlands of Chiapas, Mexico (1975–2000). Forest Ecology and Management, 226(1), 208–218.CrossRefGoogle Scholar
  16. Cincotta, R. P., Wisnewski, J., & Engelmann, R. (2000). Human population in the biodiversity hotspots. Nature, 404(6781), 990–992.CrossRefGoogle Scholar
  17. Clapp, R. A. (1995a). The unnatural history of the Monterey pine. Geographical Review, 85(1), 1–19.CrossRefGoogle Scholar
  18. Clapp, R. A. (1995b). Creating competitive advantage: forest policy as industrial policy in Chile. Economic Geography, 71(3), 273–296.CrossRefGoogle Scholar
  19. Comaniciu, D., & Meer, P. (2002). Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.CrossRefGoogle Scholar
  20. Dirzo, R., & Raven, P. H. (2003). Global state of biodiversity and loss. Annual Review of Environment and Resources, 28(1), 137–167.CrossRefGoogle Scholar
  21. Echeverria, C., Coomes, D., Salas, J., Rey-Benayas, J. M., Lara, A., & Newton, A. (2006). Rapid deforestation and fragmentation of Chilean temperate forests. Biological Conservation, 130(4), 481–494.CrossRefGoogle Scholar
  22. Fitzherbert, E. B., Struebig, M. J., Morel, A., Danielsen, F., Brühl, C. A., Donald, P. F., & Phalan, B. (2008). How will oil palm expansion affect biodiversity? Trends in Ecology & Evolution, 23(10), 538–545.CrossRefGoogle Scholar
  23. Freemantle, T. P., Wacher, T., Newby, H., & Pettorelli, N. (2013). Earth observation: overlooked potential to support species reintroduction programmes. African Journal of Ecology, 51(3), 482–492.CrossRefGoogle Scholar
  24. Fujisada, H., Bailey, G. B., Kelly, G. G., Hara, S., & Abrams, M. J. (2005). ASTER DEM performance. IEEE Transactions on Geoscience and Remite Sensing, 43(12), 2707–2714.CrossRefGoogle Scholar
  25. Ghiyamat, A., & Shafri, H. Z. (2010). A review on hyperspectral remote sensing for homogeneous and heterogeneous forest biodiversity assessment. International Journal of Remote Sensing, 31(7), 1837–1856.CrossRefGoogle Scholar
  26. Gillespie, T. W., Foody, G. M., Rocchini, D., Giorgi, A. P., & Saatchi, S. (2008). Measuring and modelling biodiversity from space. Progress in Physical Geography, 32(2), 203–221.CrossRefGoogle Scholar
  27. Gould, W. (2001). Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecological Applications, 10(6), 1861–1870.CrossRefGoogle Scholar
  28. Guerrero, P. C., & Bustamante, R. O. (2007). Can native tree species regenerate in Pinus radiata plantations in Chile?: evidence from field and laboratory experiments. Forest Ecology and Management, 253(1), 97–102.CrossRefGoogle Scholar
  29. Haines-Young, R. (2009). Land use and biodiversity relationships. Land Use Policy, 26(2009), 178–186.CrossRefGoogle Scholar
  30. He, C. (2012). Advances in the research on hyperspectral remote sensing in biodiversity and conservation. Spectroscopy and Spectral Analysis, 32(6), 1628–1632.Google Scholar
  31. Hernandez-Stefanoni, J. L., & Ponce-Hernandez, R. (2004). Mapping the spatial distribution of plant diversity indices in a tropical forest using multi-spectral satellite image classification and field measurements. Biodiversity & Conservation, 13(14), 2599–2621.CrossRefGoogle Scholar
  32. Hernandez-Stefanoni, J. L., & Ponce-Hernandez, R. (2006). Mapping the spatial variability of plant diversity in a tropical forest: comparison of spatial interpolation methods. Environmental Monitoring and Assessment, 117(1–3), 307–334.CrossRefGoogle Scholar
  33. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.CrossRefGoogle Scholar
  34. Hirano, A., Welch, R., & Lang, H. (2003). Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 57(5), 356–370.CrossRefGoogle Scholar
  35. Holmgren, M., Aviles, R., Sierralta, L., Segura, A. M., & Fuentes, E. R. (2000). Why have European herbs so successfully invaded the Chilean matorral? Effects of herbivory, soil nutrients, and fire. Journal of Arid Environments, 44(2), 197–211.CrossRefGoogle Scholar
  36. Innes, J. L., & Koch, B. (1998). Forest biodiversity and its assessment by remote sensing. Global Ecology & Biogeography Letters, 7(6), 397–419.CrossRefGoogle Scholar
  37. Instituto Nacional de Estadisticas (2002). Censo 2002. Sintesis de Resultados. Comision Nacional Del XVII Censo de Poblacion. http://www.ine.cl/cd2002/sintesiscensal.pdf. Accessed 18 November 2014.
  38. Jha, S., & Bawa, K. S. (2009). Population growth, human development, and deforestation in biodiversity hotspots. Conservation Biology, 20(3), 906–912.CrossRefGoogle Scholar
  39. Kamp, U., Bolch, T. and Olsenholler, J. (2003). DEM generation from ASTER satellite data for geomorphometric analysis of Cerro Sillajhuay, Chile/Bolivia, In Proceedings: ASPRS 2003 Annual Conference, Anchorage, Alaska.Google Scholar
  40. Kerr, J. T., & Ostrovsky, M. (2003). From space to species: ecological applications for remote sensing. Trends in Ecology & Evolution, 18(6), 299–305.CrossRefGoogle Scholar
  41. Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Journal, In Proceedings: International Joint Conference of Artificial Intelligence 1995, Montreal, Quebec, Canada.Google Scholar
  42. Langdon, B., Pauchard, A., & Aguayo, M. (2010). Pinus contorta Invasion in the Chilean Patagonia: local patterns in a global context. Biological Invasions, 12(12), 3961–3971.CrossRefGoogle Scholar
  43. Mattison, E. H., & Norris, K. (2005). Bridging the gaps between agricultural policy, land-use and biodiversity. Trends in Ecology & Evolution, 20(11), 610–616.CrossRefGoogle Scholar
  44. Miller, M. E., Hui, S. L., & Tierney, W. M. (1991). Validation techniques for logistic regression models. Statistic in. Medicine, 10(8), 1213–1226.Google Scholar
  45. Ministerio de Agricultura (1974). Fija regimen legal de los terrenos forestales o preferentemente aptos para la forestacion, y establece normas de foment sobre la materia. http://www.leychile.cl/Navegar?idNorma=6294&buscar=DL+701. Accessed 11 November 2014.
  46. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.CrossRefGoogle Scholar
  47. Nagendra, H. (2001). Using remote sensing to assess biodiversity. International Journal of Remote Sensing, 22(12), 2377–2400.CrossRefGoogle Scholar
  48. Nahuelhual, L., Carmona, A., Lara, A., Echeverria, C., & Gonzalez, M. E. (2012). Land-cover change to forest plantations: proximate causes and implications for the landscape in south-Central Chile. Landscape and Urban Planning, 107(1), 12–20.CrossRefGoogle Scholar
  49. O’Sullivan, F., & Wahba, G. (1985). A cross validated Bayesian retrieval algorithm for nonlinear remote sensing experiments. Journal of Computational Physics, 59(3), 441–455.CrossRefGoogle Scholar
  50. Oliver, I., & Beattie, A. J. (1993). A possible method for the rapid assessment of biodiversity. Conservation Biology, 7(3), 562–568.CrossRefGoogle Scholar
  51. Oliver, I., & Beattie, A. J. (1996). Designing a cost-effective invertebrate survey: a test of methods for rapid assessment of biodiversity. Ecological Applications, 6(2), 594–607.CrossRefGoogle Scholar
  52. Palmer, M. W., Earls, P. G., Hoagland, B. W., White, P. A., & Wohlgemuth, T. (2002). Quantitative tools for perfecting species lists. Environmetrics, 13(2), 121–137.CrossRefGoogle Scholar
  53. Paritsis, J., & Aizen, M. A. (2008). Effects of exotic conifer plantations on the biodiversity of understory plants, epigeal beetles and birds in Nothofagus dombeyi forests. Forest Ecology and Management, 255(5), 1575–1583.CrossRefGoogle Scholar
  54. Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 4(2), 439–473.CrossRefGoogle Scholar
  55. Pradhan, B. (2010). Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Advances in Space Research, 45(10), 1244–1256.CrossRefGoogle Scholar
  56. Rapport, D. J. (1998). Biodiversity and saving the earth. Environmental Monitoring and Assessment, 49(2–3), 169–175.CrossRefGoogle Scholar
  57. Reidsma, P., Tekelenburg, T., van den Berg, M., & Alkemade, R. (2006). Impacts of land-use change on biodiversity: an assessment of agricultural biodiversity in the European Union. Agriculture, Ecosystems & Environment, 114(1), 86–102.CrossRefGoogle Scholar
  58. Rocchini, D. (2007). Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sensing of Environment, 111(4), 423–434.CrossRefGoogle Scholar
  59. Rocchini, D., Chiarucci, A., & Loiselle, S. A. (2004). Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecologica, 26(2), 117–120.CrossRefGoogle Scholar
  60. Rocchini, D., Balkenhol, N., Carter, G. A., Foody, G. M., Gillespie, T. W., He, K. S., Kark, S., Levin, N., Lucas, K., Luoto, M., Nagendra, H., Oldeland, J., Ricotta, C., Southworth, J., & Neteler, M. (2010). Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecological Informatics, 5(5), 318–329.CrossRefGoogle Scholar
  61. Rojas, C., Vivanco, M., Sergio, O., Peters, S., & Villaroel, C. (2013). Pre and post earthquake land use and land cover identification in conception. In J. M. Krisp, L. Meng, R. Pail, & U. Stilla (Eds.), Earth observation of global changes (pp. 223–234). Heidelberg: Springer.CrossRefGoogle Scholar
  62. Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., LeRoy Poff, N., Sykes, M. T., Walker, B. H., Walker, M., & Wall, D. H. (2001). Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770–1774.CrossRefGoogle Scholar
  63. Schumacher, M., Holländer, N., & Sauerbrei, W. (1997). Resampling and cross-validation techniques: a tool to reduce bias caused by model building? Statistics in Medicine, 16(24), 2813–2827.CrossRefGoogle Scholar
  64. Shahzad, F., & Gloaguen, R. (2011a). TecDEM: a MATLAB based toolbox for tectonic geomorphology, part 1: drainage network preprocessing and stream profile analysis. Computers & Geoscience, 37(2), 250–260.CrossRefGoogle Scholar
  65. Shahzad, F., & Gloaguen, R. (2011b). TecDEM: a MATLAB based toolbox for tectonic geomorphology, part 2: surface dynamics and basin analysis. Computers & Geoscience, 37(2), 261–271.CrossRefGoogle Scholar
  66. Smith, R. S., & Doyle, J. C. (2001). Model validation: a connection between robust control and identification. IEEE Transactions on Automatic Control, 37(7), 942–952.CrossRefGoogle Scholar
  67. Smith-Ramirez, C. (2004). The Chilean coastal range: a vanishing center of biodiversity and endemism in south American temperate rainforests. Biological Conservation, 13(2), 373–393.Google Scholar
  68. Stoms, D. M., & Estes, J. E. (1993). A remote sensing research agenda for mapping and monitoring biodiversity. International Journal of Remote Sensing, 14(10), 1839–1860.CrossRefGoogle Scholar
  69. Stork, N. E. (1997). Measuring global biodiversity and its decline. Washington, DC: Joseph Henry Press.Google Scholar
  70. Swanson, T., & Myers, N. (1998). Global action for biodiversity. Environmental Conservation, 25(2), 175–185.Google Scholar
  71. Tuomisto, H. (2010a). A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33(1), 2–22.CrossRefGoogle Scholar
  72. Tuomisto, H. (2010b). A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography, 33(1), 23–45.CrossRefGoogle Scholar
  73. Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, R., & Steininger, M. (2003). Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18(6), 306–314.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Regional Science (IfR)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Chair of Remote Sensing and Landscape Information Systems (FeLis)University of FreiburgFreiburg im BreisgauGermany

Personalised recommendations