Modelling of faecal indicator bacteria (FIB) in the Red River basin (Vietnam)

  • Huong Thi Mai NguyenEmail author
  • Gilles Billen
  • Josette Garnier
  • Emma Rochelle-Newall
  • Olivier Ribolzi
  • Pierre Servais
  • Quynh Thi Phuong Le


Many studies have been published on the use of models to assess water quality through faecal contamination levels. However, the vast majority of this work has been conducted in developed countries and similar studies from developing countries in tropical regions are lacking. Here, we used the Seneque/Riverstrahler model to investigate the dynamics and seasonal distribution of total coliforms (TC), an indicator of faecal contamination, in the Red River (Northern Vietnam) and its upstream tributaries. The results of the model showed that, in general, the overall correlations between the simulated and observed values of TC follow a 1:1 relationship at all examined stations. They also showed that TC numbers were affected by both land use in terms of human and livestock populations and by hydrology (river discharge). We also developed a possible scenario based on the predicted changes in future demographics and land use in the Red River system for the 2050 horizon. Interestingly, the results showed only a limited increase of TC numbers compared with the present situation at all stations, especially in the upstream Vu Quang station and in the urban Ha Noi station. This is probably due to the dominance of diffuse sources of contamination relative to point sources. The model is to our knowledge one of the first mechanistic models able to simulate spatial and seasonal variations of microbial contamination (TC numbers) in the whole drainage network of a large regional river basin covering both urban and rural areas of a developing country.


Sub-tropical watershed modelling Future scenarios Water quality Faecal coliforms Point and non-point sources 



This work was financed by the ARCP2013_06CMY_Quynh project of the Asian Pacific Network, the UMR METIS, and the UMR iEES-Paris. This study also benefited from the emulation of the Federation Ile-de-France for Research on the Environment (FIRE). This work forms part of the PhD thesis requirements of HTMN who was financed by a PhD fellowship (ARTS) from the French Research Institute for Development (IRD).

Supplementary material

10661_2016_5528_MOESM1_ESM.docx (37 kb)
Figure S1 (DOCX 37 kb)


  1. Billen, G., Garnier, J., & Hanset, P. (1994). Modeling phytoplankton development in whole drainage networks—the Riverstrahler model applied to the Seine River system. Hydrobiologia, 289(1–3), 119–137. doi: 10.1007/bf00007414.CrossRefGoogle Scholar
  2. Billen, G., Garnier, J., Mouchel, J. M., & Silvestre, M. (2007). The Seine system: introduction to a multidisciplinary approach of the functioning of a regional river system. Science of the Total Environment, 375(1–3), 1–12. doi: 10.1016/j.scitotenv.2006.12.001.CrossRefGoogle Scholar
  3. Brauwere, A., Ouattara, K., & Servais, P. (2014). Modelling the dynamics of fecal indicators bacteria in surface waters: a review. Critical Review in Environmental Science and Technology, 44, 2389–2453.CrossRefGoogle Scholar
  4. Byamukama, D., Kansiime, F., Mach, R. L., & Farnleitner, A. H. (2000). Determination of Escherichia coli contamination with Chromocult Coliform agar showed a high level of discrimination efficiency for differing fecal pollution levels in tropical waters of Kampala, Uganda. Applied and Environmental Microbiology, 66(2), 864–868. doi: 10.1128/aem.66.2.864-868.2000.CrossRefGoogle Scholar
  5. Byappanahalli, M. N., Nevers, M. B., Korajkic, A., Staley, Z. R., & Harwood, V. J. (2012). Enterococci in the environment. Microbiology and Molecular Biology Reviews, 76(4), 685–706. doi: 10.1128/mmbr.00023-12.CrossRefGoogle Scholar
  6. Causse, J., Billen, G., Garnier, J., Henri-des-Tureaux, T., Olasa, X., Thammahacksa, C., et al. (2015). Field and modelling studies of Escherichia coli loads in tropical streams of montane agro-ecosystems. Journal of Hydro-Environment Research, 9, 496–507. doi: 10.1016/j.jher.2015.03.003.CrossRefGoogle Scholar
  7. Chan, Y. M., Thoe, W., & Lee, J. H. W. (2015). Field and laboratory studies of Escherichia coli decay rate in subtropical coastal water. Journal of Hydro-Environment Research, 9(1), 1–14. doi: 10.1016/j.jher.2014.08.002.CrossRefGoogle Scholar
  8. Chu, A. D., Pham, M. C., & Nguyen, M. K. (2010). Characteristics of urban wastewater in Hanoi City nutritive value and potential risk in using for agriculture. VNU Journal of Science, Earth Sciences, 26, 42–47.Google Scholar
  9. Chu, V. T., Torréton, J.-P., Mari, X., Nguyen, T. M. H., Pham, T. K., Pham, T. T., et al. (2014). Nutrient ratios and the complex structure of phytoplankton communities in a highly turbid estuary of Southeast Asia. Environmental Monitoring and Assessment, 186(12), 8555–8572. doi: 10.1007/s10661-014-4024-y.CrossRefGoogle Scholar
  10. Chu, Y., Salles, C., Tournoud, M. G., Got, P., Troussellier, M., Rodier, C., et al. (2011). Faecal bacterial loads during flood events in northwestern Mediterranean coastal rivers. Journal of Hydrology, 405(3–4), 501–511. doi: 10.1016/j.jhydrol.2011.05.047.CrossRefGoogle Scholar
  11. Collins, R., Elliott, S., & Adams, R. (2005). Overland flow delivery of faecal bacteria to a headwater pastoral stream. Journal of Applied Microbiology, 99, 126–132.CrossRefGoogle Scholar
  12. Crowther, J., Kay, D., & Wyer, M. D. (2002). Faecal-indicator concentrations in waters draining lowland pastoral catchments in the UK: relationships with land use and farming practices. Water Research, 36(7), 1725–1734. doi: 10.1016/S0043-13540100394-3.CrossRefGoogle Scholar
  13. DeFries, R., Hansen, M., Townshend, J. R. G., & Sohlberg, R. (1998). Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers. International Journal of Remote Sensing, 19(16), 3141–3168.CrossRefGoogle Scholar
  14. DeKoninck, R. (1998). La logique de la déforestation en Asie du Sud Est. ORSTOM: Cahiers de l'Outre Mer.Google Scholar
  15. Eckhardt, K. (2005). How to construct recursive digital filters for baseflow separation. Hydrological Processes, 19(2), 507–515.CrossRefGoogle Scholar
  16. Eckhardt, K. (2008). A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. Hydrology and Earth System Sciences, 352(1), 168–173.Google Scholar
  17. Eleria, A., & Vogel, R. M. (2005). Predicting fecal coliform bacteria levels in the Charles River, Massachusetts, USA. Journal of the American Water Resources Association (JAWRA), 41(5), 1195–1209.CrossRefGoogle Scholar
  18. FAO (2011). Climate change impacts on agriculture in Vietnam: strengthening capacities to enhance coordinated and integrated disaster risk reduction actions and adaptation to climate change in agriculture in the Northern Mountain Regions of Viet Nam. In FAO (Ed.), (Vol. UNJP/VIE/037). Hanoi, Vietnam: FAO.Google Scholar
  19. Frick, W. E., Ge, Z. F., & Zepp, R. G. (2008). Nowcasting and forecasting concentrations of biological contaminants at beaches: a feasibility and case study. Environmental Science and Technology, 42, 4818–4824.CrossRefGoogle Scholar
  20. Garnier, J., Billen, G., Hannon, E., Fonbonne, S., Videnina, Y., & Soulie, M. (2002). Modelling the transfer and retention of nutrients in the drainage network of the Danube River. Estuarine Coastal and Shelf Science, 54(3), 285–308. doi: 10.1006/ecss.2000.0648.CrossRefGoogle Scholar
  21. Garnier, J., Brion, N., Callens, J., Passy, P., Deligne, C., Billen, G., et al. (2013). Modeling historical changes in nutrient delivery and water quality of the Zenne River (1790s-2010): the role of land use, waterscape and urban wastewater management. Journal of Marine Systems, 128, 62–76. doi: 10.1016/j.jmarsys.2012.04.001.CrossRefGoogle Scholar
  22. GSO (1997). Vietnam General Statistics. (pp. 550). Hanoi, Vietnam: General Statistical Office (GSO), Ministry of Science, Technology and Environment of Vietnam (MOSTE).Google Scholar
  23. GSO (2013). Vietnam General Statistics. (pp. Hanoi, Vietnam: General Statistical Office (GSO), Ministry of Science, Technology and Environment of Vietnam (MOSTE).
  24. Hansen, M., DeFries, R., Townshend, J. R. G., & Sohlberg, R. (2000). Global land cover classification at 1 km resolution using a decision tree classifier. International Journal of Remote Sensing, 21, 1331–1365.CrossRefGoogle Scholar
  25. HAWACO (2012). Results of observation and analysis of wastewater in Yen So Wastewater Treatment Plant after handover for the management and operation in 10/2013 (in Vietnamese). (pp. 18 pp). Hanoi: Hanoi sewerage and drainage limited company (HAWACO).Google Scholar
  26. Hoch, B., Berger, B., Kavka, G., & Herndl, G. J. (1996). Influence of wastewater treatment on the microbial ecology of a large, temperate river system—the Danube River. Hydrobiologia, 321, 205–218.CrossRefGoogle Scholar
  27. Hong, H., Qiu, J., & Liang, Y. (2010). Environmental factors influencing the distribution of total and fecal coliform bacteria in six water storage reservoirs in the Pearl River Delta region, China. Journal of Environmental Sciences-China, 22(5), 663–668.CrossRefGoogle Scholar
  28. Ishii, S., & Sadowsky, M. J. (2008). Escherichia coli in the environment: implications for water quality and human health. Microbes and Environments, 23(2), 101–108. doi: 10.1264/jsme2.23.101.CrossRefGoogle Scholar
  29. Kok, G. (2006). Macro and micro dredging as a tool for mitigating floods and droughts in the Red River Delta, Vietnam. Terra et Aqua, 103, 3–13.Google Scholar
  30. Le, T. P. Q., Billen, G., Garnier, J., Thery, S., Fezard, C., & Minh, C. V. (2005). Nutrient (N, P) budgets for the Red River basin (Vietnam and China). Global Biogeochemical Cycles, 19, GB2022. doi: 10.1029/2004GB002405.Google Scholar
  31. Le, T. P. Q., Billen, G., Garnier, J., Thery, S., Ruelland, D., Nghiem, X. A., et al. (2010). Nutrient (N, P, Si) transfers in the subtropical Red River system (China and Vietnam): modelling and budget of nutrient sources and sinks. Journal of Asian Earth Sciences, 37(3), 259–274. doi: 10.1016/j.jseaes.2009.08.010.CrossRefGoogle Scholar
  32. Le, T. P. Q., Garnier, J., Billen, G., Thery, S., & Chau, V. M. (2007). The changing flow regime and sediment load of the Red River, Viet Nam. Journal of Hydrology, 334, 199–214. doi: 10.1016/j.jhydrol.2006.10.020.CrossRefGoogle Scholar
  33. Leclerc, H., Mossel, D. A. A., Edberg, S. C., & Struijk, C. B. (2001). Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annual Review of Microbiology, 55, 201–234. doi: 10.1146/annurev.micro.55.1.201.CrossRefGoogle Scholar
  34. McDonald, A., & Kay, D. (1981). Enteric bacterial concentrations in reservoir feeder streams:baseflow characteristics and response to hydrograph events. Water Research, 15, 961–968.CrossRefGoogle Scholar
  35. Meyers, D. N., Koltu, G. F., & Francy, D. S. (1998). Effects of hydrologic, biological, and environmental processes on sources and concentrations of fecal bacteria in the Cuyahoga River and implications for management of recreational waters in summit and Cuyahoga counties, Ohio. In USGS WRIR 98–4089. Columbus: Ohio.Google Scholar
  36. Mitch, A. A., Gasner, K. C., & Mitch, W. A. (2010). Fecal coliform accumulation within a river subject to seasonally-disinfected wastewater discharges. Water Research, 44, 4776–4782.CrossRefGoogle Scholar
  37. MoH (2009). National technical regulation on domestic water quality (QCVN 02:2009/BYT) In D. o. P. M. Environment (Ed.). Hanoi: Minstry of Health, Vietnam.Google Scholar
  38. Musyoki, A. M., Suleiman, M. A., Mbithi, J. N., & Maingi, J. M. (2013). Water-borne bacterial pathogens in surface waters of Nairobi river and health implication to communities downstream Athi River. International Journal of Life Science and Pharma Research, 3(1), L4–L10.Google Scholar
  39. Navarro, P., Amouroux, D., Thanh, N. D., Rochelle-Newall, E., Ouillon, S., Arfi, R., et al. (2012). Fate and tidal transport of butyltin and mercury compounds in the waters of the tropical Bach dang estuary (Haiphong, Vietnam). Marine Pollution Bulletin, 64(9), 1789–1798. doi: 10.1016/j.marpolbul.2012.05.036.CrossRefGoogle Scholar
  40. Nevers, M. B., & Whitman, R. L. (2011). Efficacy of monitoring and empirical predictivemodeling at improving public health protection at Chicago beaches. Water Research, 45(4), 1659–1668.CrossRefGoogle Scholar
  41. Nguyen, H. N. (2006). Decentralized wastewater treatment and reclamation using membrane bioreactor.Google Scholar
  42. Nguyen, H. T., Yuzuru, K. G., Tomoko, M., Junichi, H., Kainuma, F. M., Duong, N. T. T., et al. (2012). A low carbon society development towards 2030 in Vietnam. National Climate Change Strategy by the Government of Vietnam. Google Scholar
  43. Nguyen, Q. T. (2012). Planning tasks for the red-Thai Binh River basin. Capacity building for river basin water resources planning. Department of Water Resources Management on behalf of the Government of Viet Nam and the Asian Development Bank.Google Scholar
  44. Nguyen, T. M. H., Le, T. P. Q., Garnier, J., Janeau, J.-L., & Rochelle-Newall, E. (2016). Seasonal variability of faecal indicator bacteria numbers and die-off rates in the Red River basin, North Viet Nam. Scientific Reports, 6, 21644. doi: 10.1038/srep21644.CrossRefGoogle Scholar
  45. Ouattara, N. K., de Brauwere, A., Billen, G., & Servais, P. (2013). Modelling faecal contamination in the Scheldt drainage network. Journal of Marine Systems, 128, 77–88. doi: 10.1016/j.jmarsys.2012.05.004.CrossRefGoogle Scholar
  46. Palaniappan, M., Gleick, P. H., Allen, L., Cohen, M. J., Christian-Smith, J., & Smith, C. (2010). Clearing the Waters A focus on water quality solutions. In N. Ross (Ed.), (pp. 91). Nairobi, Kenya: UNEP.Google Scholar
  47. Pham, M. T. (2014). PART 1—water demand scenarios. Integrated and sustainable water Management of Red-Thai Binh River System in a changing climate IMRR project. Vietnam: Hanoi.Google Scholar
  48. PMOV (2013). Decision number 725/QD-TTg on approval of Approving the Master Plan on Hanoi capital’s drainage through 2030 with a vision toward 2050. Hanoi, Vietnam: Prime Ministers Office of Vietnam (PMOV).Google Scholar
  49. Poffenberger, M. (1998). Stewards of Vietnam’s upland forests, research network report 10. Berkeley, California, USA: Centre for Southeast Asian Studies, University of California.Google Scholar
  50. Ribolzi, O., Evrard, E., Huon, S., Rochelle-Newall, E., Henri-des-Tureaux, T., Silvera, N., et al. (2016a). Use of fallout radionuclides (7Be, 210Pb ) to estimate resuspension of Escherichia coli from streambed sediments during floods in a tropical montane catchment. Environmental Science and Pollution Research, 23(4), 3427–3435. doi: 10.1007/s11356-015-5595-z.CrossRefGoogle Scholar
  51. Ribolzi, O., Rochelle-Newall, E., Dittrich, S., Auda, Y., Newton, P. N., Rattanavong, S., et al. (2016b). Land use and soil type determine the presence of the pathogen Burkholderia pseudomallei in tropical rivers. Environmental Science and Pollution Research. doi: 10.1007/s11356-015-5943-z.Google Scholar
  52. Rochelle-Newall, E. J., Nguyen, T. M. H., Le, T. P. Q., Sengtaheuanghoung, O., & Ribolzi, O. (2015). A short review of faecal indicator bacteria in tropical aquatic ecosystems: knowledge gaps and future directions. Frontiers in Microbiology: Aquatic Microbiology, 6, 308. doi: 10.3389/fmicb.2015.00308.CrossRefGoogle Scholar
  53. Servais, P., Billen, G., Goncalves, A., & Garcia-Armisen, T. (2007a). Modelling microbiological water quality in the Seine river drainage network: past, present and future situations. Hydrology and Earth System Sciences, 11(5), 1581–1592.CrossRefGoogle Scholar
  54. Servais, P., Garcia-Armisen, T., George, I., & Billen, G. (2007b). Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling. Science of the Total Environment, 375, 152–167.CrossRefGoogle Scholar
  55. Tebbutt, T. H. Y. (1992). Principles of water quality control (4th ed.). Amsterdam: Elsevier Science Limited.Google Scholar
  56. Tilburg, C. E., Jordan, L. M., Carlson, A. E., Zeeman, S. I., & Yund, P. O. (2015). The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine. Royal Society Open Science, 2(7), 140429. doi: 10.1098/rsos.140429.CrossRefGoogle Scholar
  57. Trinh, A. D., Meysman, F., Rochelle-Newall, E. J., & Bonnet, M.-P. (2012). Quantification of sediment water interactions in a polluted tropical river through biogeochemical modeling. Global Biogeochemical Cycles, 26, GB3010. doi: 10.1029/2010GB003963.CrossRefGoogle Scholar
  58. VIWRR (2008 ). Integrated and sustainable use of water resources for maintaining ecosystems of Xuan Thuy national park. Vietnam-Netherlands Water Partnership On Water for Food and Ecosystems (WFE). Hanoi, Vietnam: Vietnam Institute For Water Resources Research (VIWRR).Google Scholar
  59. Vu, T. H. (2012). Use WQI indicators for first steps review some river water quality in Tuyen Quang. Haiphong University Haiphong.Google Scholar
  60. WHO (2014). Preventing diarrhoea through better water, santitaton and hygiene: Exposures and impacts in low- and middle-income countries. In W. H. Organisation (Ed.), (pp. 48). France: WHO.Google Scholar
  61. Wilcock, R. J., Monaghan, R. M., Quinn, J. M., Campbell, I. M., Thorrold, B. S., Duncan, M. J., et al. (2006). Land-use impacts and water quality targets in the intensive dairying catchment of the Toenepi stream, New Zealand. New Zealand Journal of Marine and Freshwater Research, 40, 123–140.CrossRefGoogle Scholar
  62. Wilkes, G., Edge, T., Gannon, V., Jokinen, C., Lyautey, E., Medeiros, D., et al. (2009). Seasonal relationships among indicator bacteria, pathogenic bacteria, cryptosporidium oocysts, giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Water Research, 43, 2209–2223.CrossRefGoogle Scholar
  63. Wilkinson, J., Jenkins, A., Wyer, M., & Kay, D. (1995). Modelling faecal coliform dynamics in streams and rivers. Water Research, 29(3), 847–855. doi: 10.1016/0043-1354(94)00211-O.CrossRefGoogle Scholar
  64. Xuan, T. T. (2010). Preliminary assessment of rainwater resources: statistical indicators of water resources (in Vietnamese), Scientific research project of the Ministry of Natural Resources and Environment (MONRE). Vietnam: Hanoi.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Huong Thi Mai Nguyen
    • 1
    • 3
    Email author
  • Gilles Billen
    • 2
  • Josette Garnier
    • 2
  • Emma Rochelle-Newall
    • 3
  • Olivier Ribolzi
    • 4
  • Pierre Servais
    • 5
  • Quynh Thi Phuong Le
    • 1
  1. 1.Institute of Natural Product ChemistryViet Nam Academy of Science and TechnologyCau Giay, Ha NoiVietnam
  2. 2.CNRS and Université Pierre et Marie Curie, UMR 7619 METISParisFrance
  3. 3.iEES-Paris (IRD, Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRA, UPEC, Université Paris Diderot)ParisFrance
  4. 4.IRD, UMR 5563 GETUniversité Paul SabatierToulouseFrance
  5. 5.Université Libre de BruxellesEcologie des Systèmes Aquatiques, Campus PlaineBruxellesBelgium

Personalised recommendations