Sorption kinetics of zinc and nickel on modified chitosan

  • Nimisha Tripathi
  • Girish Choppala
  • Raj S. Singh
  • Prashant Srivastava
  • Balaji Seshadri
Article

Abstract

This study was conducted to evaluate the effect of equilibration time on adsorption of zinc [Zn(II)] and nickel [Ni(II)] on pure and modified chitosan beads. The initial adsorption of Zn(II) was high on molybdenum (Mo)-impregnated chitosan beads (MoCB) during the initial 60 min. However, after 240 min, Zn(II) adsorption occurred more on single super phosphate chitosan beads (SSPCB), followed by monocalcium phosphate chitosan beads (MCPCB), untreated pure chitosan beads (UCB), and MoCB. Similarly, Ni(II) adsorption was greatest on MoCB during the initial 60 min. At the conclusion of the experiment (at 240 min), the greatest adsorption was occurred on MCPCB, followed by MoCB, UCB, and SSPCB. Chemical sorption and intra-particle diffusion were probably the dominant processes responsible for Zn(II) and Ni(II) sorption onto chitosan beads. The results demonstrated that modified chitosan beads were effective in adsorbing Zn and Ni and hence, could be used for the removal of these toxic metals from soil.

Keywords

Chitosan Contamination Heavy metals Adsorption Kinetic models 

Notes

Acknowledgments

The senior author is grateful to the Department of Education, Employment and Workplace Relations (DEEWR), Australia, for funding the Endeavor Research Award, and to Central Institute of Mining and Fuel Research, CSIR, Dhanbad India, in support of this award. The authors are grateful to Prof. Nanthi S. Bolan for insights on this work.

References

  1. Abdou, E. S., Nagy, K. S. A., & Elsabee, M. Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 99, 1359–1367.CrossRefGoogle Scholar
  2. Agulló, E., Mato, R., Tapia, C., Heras, A., Román, J.S., Argüelles, W., Goycoolea, F., Mayorga, A., Nakamatsu, J., Pastor A (2004) Quitina y Quitosano: Obtención, Caracterización y Aplicaciones, Pontificia Universidad Católicadel Perú, Fondo Editorial, 244–245.Google Scholar
  3. Atkinson, R. J., Posner, A. M., & Quirk, J. P. (1967). Adsorption of potential determining ions at the ferric oxide aqueous electrolyte interface. Journal of Physical Chemistry, 71, 550–558.CrossRefGoogle Scholar
  4. Basak, A., Mandal, L. N., & Haldar, M. (1982). Interaction of phosphorus and molybdenum and the availability of zinc, copper, manganese, molybdenum and phosphorus in waterlogged rice soil. Plant and Soil, 68, 271–278.CrossRefGoogle Scholar
  5. Benavente, M. (2008). Adsorption of Metallic Ions onto Chitosan: Equilibrium and Kinetic Studies. Licentiate Thesis. TRITA CHE Report 2008:44. ISBN 978–91–7178–986–0. Link: www.diva-portal.org/smash/get/diva2:13755/FULLTEXT01.pdf; Accessed on 1st August 2016.
  6. Bhattacharyya, K. G., & Sharma, A. (2004). Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo red solutions. Journal of Environmental Management, 71, 217–229.CrossRefGoogle Scholar
  7. Bolan, N. S., Syers, J. K., & Summer, M. E. (1993). Calcium-induced sulphate adsorption by soils. Soil Science Society of America Proceedings, 57, 691–696.CrossRefGoogle Scholar
  8. Bowden, J. W., Nagarajah, S., Barrow, N. J., Posner, A. M., & Quirk, J. P. (1980). Describing the adsorption of phosphate, citrate and selenite on a variable charge mineral surface. Australian Journal of Soil Research, 18, 49–60.CrossRefGoogle Scholar
  9. Breeuwsma, A., & Lyklema, J. (1973). Physical and chemical adsorption of ions in the electrical double layer on hematite (a- Fe2O3). Journal of Colloid Interface Science, 43, 437–442.CrossRefGoogle Scholar
  10. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.CrossRefGoogle Scholar
  11. Burke, A., Yilmaz, E., & Hasirci, N. (2002). Iron (III) ion removal from solution through adsorption on chitosan. Journal of Applied Polymer Science, 84, 1185–1192.CrossRefGoogle Scholar
  12. Chakrabarty, T., Kumar, M. & Shahi, V. K. (2010). Chitosan based membranes for separation, pervaporation and fuel cell applications: Recent Developments. Biopolymers, Magdy Elnashar (Ed.), ISBN: 978-953-307-109-1, InTech, Available from: http://www.intechopen.com/books/biopolymers/chitosan-basedmembranes-; Accessed on 25th July 2016.
  13. Chen, C., Li, X., Zhao, D., Tan, X., & Wang, X. (2007). Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes. Colloids and surfaces a: physicochemical and engineering aspects, 302, 449–454.CrossRefGoogle Scholar
  14. Chen, A. H., Yang, C. Y., Chen, C. Y., & Chen, C. W. (2009). The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. Journal of Hazardous Materials, 163, 1068.CrossRefGoogle Scholar
  15. Chien, S. H., & Clayton, W. R. (1980). Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal, 44, 265–268.CrossRefGoogle Scholar
  16. Chu, K. H. (2002). Removal of copper from aqueous solution by chitosan in prawn shell: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 90, 77–95.CrossRefGoogle Scholar
  17. Dambies, L., Vincent, T., Domard, A., & Guibal, E. (2001). Preparation of chitosan gel beads by ionotropic molybdate gelation. Biomacromolecules, 2, 1198–1205.CrossRefGoogle Scholar
  18. Davies, J. A., James, R. O., & Leckie, J. O. (1978). Surface ionization and complexation at the oxide/water interface. Journal of Colloid Interface Science, 63, 480–499.CrossRefGoogle Scholar
  19. Denkhaus, E., & Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology, 42, 35–56.CrossRefGoogle Scholar
  20. Dhakal, R. P., Ghimire, K. N., & Inoue, K. (2005). Adsorptive separation of heavy metal from an aquatic environment using orange waste. Hydrometallurgy, 79, 182–190.CrossRefGoogle Scholar
  21. Ding, P., Huang, K. L., Li, G. Y., Liu, Y. F., & Zeng, W. W. (2006). Kinetics of adsorption of Zn(II) ion on chitosan derivatives. International Journal of Biological Macromolecules, 39, 222.CrossRefGoogle Scholar
  22. Duarte, A. R. C., Mano, J. F., & Reis, R. J. (2010). Novel 3D scaffolds of chitosan–PLLA blends for tissue engineering applications: preparation and characterization. The Journal of Supercritical Fluids, 54, 282–289.CrossRefGoogle Scholar
  23. Eddy, N. O., & Odoemelam, S. A. (2009). Modelling of the adsorption of Zn2+ from aqueous solution by modified and pure tiger nut shell. African Journal of Pure and Applied Chemistry, 3, 145–151.Google Scholar
  24. Fu, J., Ji, J., Fan, D. & Shen, J. (2006). Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. Journal of Biomedical Materials Research, Part A DOI 10.1002/jbm.a. Wiley Inter Science  (www.interscience.wiley.com). DOI: 10.1002/jbm.a.30819.
  25. Gang, S., & Weixing, S. (1998). Sunflower stalk as adsorbents for the removal of metal ions from waste water. Industrial & Engineering Chemistry Research, 37, 1324–1328.CrossRefGoogle Scholar
  26. Gerente, C., Lee, V. K. C., Cloirec, P. L., & McKay, G. (2007). Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Critical Reviews in Environmental Science & Technology, 37, 41–127.CrossRefGoogle Scholar
  27. Ghosh, M. M., & Yuan, J. R. (1987). Adsorption of inorganic arsenic and organo-arsenicals on hydrous oxide. Environmental Progress, 6, 150–156.CrossRefGoogle Scholar
  28. Gillman, G. P., & Sumpter, E. A. (1986). Modification to the compulsive exchange method for measuring exchange characteristics of soils. Australian Journal of Soil Research, 24, 61–66. doi: 10.1071/SR9860061.CrossRefGoogle Scholar
  29. Guibal, E., Milot, C., & Tobin, J. M. (1998). Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Industrial & Engineering Chemistry, 37, 1454–1463.CrossRefGoogle Scholar
  30. Hastuti, B., Masykur, A. and Hadi, S. (2016). Modification of chitosan by swelling and crosslinking using epichlorohydrin as heavy metal Cr (VI) adsorbent in batik industry wastes. IOP Conf. Series: Materials Science and Engineering 107 (2016) 012020 doi:10.1088/1757-899X/107/1/012020. Available at http://iopscience.iop.org/article/10.1088/1757-899X/107/1/012020/pdf (accessed on 7th July 2016).
  31. Hingston, F.J. (1970). Specific adsorption of anions on geothite and gibbsite. Ph.D. Thesis, Univ. Western Australia.Google Scholar
  32. Hingston, F. J., Posner, A. M., & Quirk, J. P. (1972). Anion adsorption by goethite and gibbsite. I. The role of the proton in determining adsorption envelopes. Journal of Soil Science, 23, 177–192.CrossRefGoogle Scholar
  33. Ho, Y. S., Mckay, G., Wase, D. A. J., & Forster, C. F. (2000). Study of the sorption of divalent metal ions onto peat. Adsorption Science Technology, 18, 639–650.CrossRefGoogle Scholar
  34. Igwe, J. C., Abia, A. A., & Ibeh, C. A. (2008). Adsorption kinetics and intra-particulate diffusivities of Hg, As and Pb ions on unmodified and thiolated coconut fiber. International Journal of Environmental Science and Technology, 5, 83–92.CrossRefGoogle Scholar
  35. Ikhsan, J., Wells, J. D., Johnson, B. B., & Angove, M. J. (2005). Surface complexation modeling of the sorption of Zn(II) by montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252, 33–41.CrossRefGoogle Scholar
  36. Jeon, C., & Höll, H. (2003). Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Research, 37, 4770–4780.CrossRefGoogle Scholar
  37. Kamari, A., Wan Ngah, W. S., & Liew, L. K. (2009). Chitosan and chemically modified chitosan beads for acid dyes sorption. Journal of Environmental Sciences, 21, 296–302.CrossRefGoogle Scholar
  38. Kraepiel, A. M. L., Kellers, K., & Morel, F. M. M. (1999). A model for metal adsorption on montmorillonite. Journal of Colloid Interface Science, 210, 43–54.CrossRefGoogle Scholar
  39. Kumar, D., Singh, R. R., Singh, S. P., Jha, S., & Srivastava, P. (2011). Selection of suitable extractant for predicting the response of chickpea to zinc application in vertisols. Communications in Soil Science and Plant Analysis, 42, 728–740.CrossRefGoogle Scholar
  40. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Suensk Vetenskapsakademiens Handlingar, 241, 1–39.Google Scholar
  41. Lambert, R., Grant, C. & Sauvé, S. (2007). Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers. Science of the Total Environment, 378, 293–305.Google Scholar
  42. Li, Q., Zhai, J. P., Zhang, W. Y., Wang, M. M., & Zhou, J. (2007). Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Materials, 141, 163–167.CrossRefGoogle Scholar
  43. Low, K. S., Lee, C. K., & Liew, S. C. (2000). Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochemistry, 36, 59–64.CrossRefGoogle Scholar
  44. Martin, J. M., Grossiord, C., Mogne, T. L., & Igarashi, J. (2000). Transfer films and friction under boundary lubrication. Wear, 245, 107–115.CrossRefGoogle Scholar
  45. McKay, G., Blair, H.S., Findon, A. (1986). Sorption of metal ions by chitosan. In: H. Eccles, S. Hunt ŽEds., Immobilization of ions by bio-sorption. Ellis Horwood, Chichester, UK 59–69Google Scholar
  46. Monteiro Jr., O. A. C., & Airoldi, C. (1999). Some thermodynamic data on copper–chitin and copper–chitosan biopolymer interactions. Journal of Colloid Interface Science, 212, 212–219.CrossRefGoogle Scholar
  47. Naidu, R., Syers, J. K., Tillman, R. W., & Kirkman, J. H. (1990). Effect of liming on phosphate sorption by acid soils. Journal of Soil Science, 41, 165–175.CrossRefGoogle Scholar
  48. Ngah, W. S., Kamari, A., & Koay, Y. J. (2004). Equilibrium kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. International Journal of Biological Macromolecules, 34, 155–161.CrossRefGoogle Scholar
  49. Ngah, W. S., Wan, T. L. C., & Fatinathan, S. (2008). Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chemical Engineering Journal, 143, 62–72.CrossRefGoogle Scholar
  50. Ngah, W. S., Wan, T. L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydrate Polymers, 83, 1446–1456.CrossRefGoogle Scholar
  51. Nriagu, J. (2007). Zinc toxicity in humans. Encyclopedia of environmental health, Elsevier: Michigan, USA, pp.801–807.Google Scholar
  52. Onsoyen, E., & Skaugrud, O. (1990). Metal recovery using chitosan. Journal of Chemical Technology, 49, 395–404.Google Scholar
  53. Ozcan, A., Ozcan, A. S., Tunali, S., Akar, T., & Khan, I. (2005). Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of capsicum annum. Journal of Hazardous Materials, 124, 200–208.CrossRefGoogle Scholar
  54. Popuri, S. R., Vijayaa, Y., Boddu, V. M., & Abburi, K. (2009). Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresource Technology, 100, 194–199.CrossRefGoogle Scholar
  55. Rezaei, R. M., Esfandbod, M., Adhami, E., & Srivastava, P. (2014). Cadmium desorption behavior in selected sub-tropical soils: effects of soil properties. Journal of Geochemical Exploration, 144, 230–236.CrossRefGoogle Scholar
  56. Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1–27.CrossRefGoogle Scholar
  57. Rinaudo, M. (2006). Chitin and Chitosan: Properties and Applications. Progress in Polymer Science, 31, 603–632.Google Scholar
  58. Rodriguez, J. A., & Kuhn, M. (1995). Co-adsorption of Zn and S on Mo(110): weakening of the Zn & Mo bond and Zn-promoted sulfidation of Mo. Surface Science, 336, 1–12.CrossRefGoogle Scholar
  59. Rout, G. R., & Das, P. (2003). Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie, 23, 3–11.CrossRefGoogle Scholar
  60. Rudzinski, W., & Plazinski, W. (2009). On the applicability of the pseudo-second order equation to represent the kinetics of adsorption at solid/solution interfaces: a theoretical analysis based on the statistical rate theory. Adsorption, 15, 181.CrossRefGoogle Scholar
  61. Ryden, J. C., & Syers, J. K. (1975). Charge relationships of phosphate sorption. Nature, 255, 51–53.CrossRefGoogle Scholar
  62. Sapalidis, A.A., Katsaros, F.K., Kanellopoulos, N.K. (2011). PVA/montmorillonite nanocomposites: development and properties. Nanocomposites and polymers with analytical methods. John Cuppoletti (Ed), ISBN 978–953–307-352-1, 404 pages, Publisher: InTech (http://cdn.intechopen.com/pdfs/17185/InTech-Pva_montmorillonite _nanocomposites_development_and_properties.pdf
  63. Selim, H. M. (2012). Competitive Sorption and Transport of Trace Elements in Soils and Geological Media.CRC/Taylor and Francis, Boca Raton, FL (425 p).Google Scholar
  64. Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science & Technology, 10, 37–51.CrossRefGoogle Scholar
  65. Shen, J., & Duvnjak, Z. (2005). Adsorption kinetics of cupric and cadmium ions on corncob particles. Process Biochemistry, 40, 3446–3454.CrossRefGoogle Scholar
  66. Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 19, 105–116.CrossRefGoogle Scholar
  67. Sparks, D. L. (1986). Kinetics of reaction in pure and mixed systems in soil physical chemistry. Boca Raton: CRC Press.Google Scholar
  68. Sparks, D. L. (1989). Kinetics of soil chemical processes. San Diego: Academic Press.Google Scholar
  69. Sparks, D. L. (1990). Kinetics of soil chemical processes: an overview. Trans. Int. Congress of Soil Science, 2, 4–9.Google Scholar
  70. Srivastava, P., Singh, B., & Angove, M. (2005). Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 290, 28–38.CrossRefGoogle Scholar
  71. Srivastava, P. C., & Srivastava, P. (2008). Integration of soil pH with soil-test values of zinc for prediction of yield response in rice grown in mollisols. Communications in Soil Science and Plant Analysis, 39, 2456–2468.CrossRefGoogle Scholar
  72. Srivastava, P. C., Naresh, M., & Srivastava, P. (2008). Appraisal of some soil tests for zinc availability to late-sown wheat grown in mollisols. Communications in Soil Science and Plant Analysis, 39, 440–449.CrossRefGoogle Scholar
  73. Srivastava, S. K., Tyagi, R., & Pant, N. (1989). Adsorption of heavy metals on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Research, 23, 1161–1165.CrossRefGoogle Scholar
  74. Stathi, P., Papadas, I. T., Tselepidou, A., & Deligiannakis, Y. (2010). Heavy metal uptake by a high cation-exchange capacity montmorillonite: the role of permanent charge sites. Global NEST Journal, 12, 248–255.Google Scholar
  75. Trgo, M., Peric, J., & Vukojević, M. N. (2006). A comparative study of ion exchange kinetics in zinc/lead-modified zeolite-clinoptilolite systems. Journal of Hazardous Materials, 136, 938–945.CrossRefGoogle Scholar
  76. Varma, A. J., Deshpande, S. V., & Kennedy, J. F. (2004). Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers, 55, 77–93.CrossRefGoogle Scholar
  77. Vijaya, Y., Srinivasa, R. P., Veera, M. B., & Krishnaiah, A. (2008). Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydrate Polymers, 72, 261–271.CrossRefGoogle Scholar
  78. Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27, 195–226.CrossRefGoogle Scholar
  79. Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of Sanitation Engineering Division of American Society of Civil Engineering, 89, 31–60.Google Scholar
  80. White, R.E. (1980). Retention and release of phosphate by soil and soil constituents. In: Soils and Agriculture (P. B. Tinker, Ed.). Critical Reports on Applied Chemistry Volume 2. Soc. Chem. Ind. Oxford. Blackwell Scientific Publications, 71–114Google Scholar
  81. Wu, F. C., Tseng, R. L., & Juang, R. X. (2000). Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes. Journal of Hazardous Materials, 73, 63–75.CrossRefGoogle Scholar
  82. Zhao, K., & Selim, H. M. (2010). Adsorption-desorption kinetics of Zn in soils: influence of phosphate. Soil Science, 175, 145–153.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nimisha Tripathi
    • 1
    • 2
    • 3
  • Girish Choppala
    • 4
  • Raj S. Singh
    • 2
  • Prashant Srivastava
    • 1
    • 5
  • Balaji Seshadri
    • 5
  1. 1.Centre for Environmental Risk Assessment and Remediation, Building–XUniversity of South AustraliaMawson LakesAustralia
  2. 2.Central Institute of Mining and Fuel ResearchDhanbadIndia
  3. 3.University of GreenwichKentUK
  4. 4.Southern Cross GeoScienceSouthern Cross UniversityLismoreAustralia
  5. 5.Global Centre for Environmental Remediation (GCER), Faculty of Science and Information TechnologyThe University of NewcastleCallaghanAustralia

Personalised recommendations