Advertisement

Assessment of methane generation, oxidation, and emission in a subtropical landfill test cell

  • João M. L. MoreiraEmail author
  • Giovano Candiani
Article

Abstract

This paper presents results of a methane balance assessment in a test cell built in a region with a subtropical climate near São Paulo, Brazil. Measurements and calculations were carried out to obtain the total methane emission to the atmosphere, the methane oxidation rate in the cover, and the total methane generation rate in the test cell. The oxidation rate was obtained through a calculation scheme based on a vertical one-dimensional methane transport in the cover region. The measured maximum and mean methane fluxes to the atmosphere were 124.4 and 15.87 g m−2 d−1, respectively. The total methane generation rate obtained for the test cell was 0.0380 ± 0.0075 mol s−1. The results yielded that 69 % of the emitted methane occurred through the central well and 31 % through the cover interface with the atmosphere. The evaluations of the methane oxidation fraction for localized conditions in the lateral embankment of the test cell yielded 0.36 ± 0.11, while for the whole test cell yielded 0.15 ± 0.10. These results conciliate localized and overall evaluations reported in the literature. The specific methane generation rate obtained for the municipal solid waste with an age of 410 days was 317 ± 62 mol year−1 ton−1. This result from the subtropical São Paulo region is lower than reported figures for tropical climates and higher than reported figures for temperate climates.

Keywords

Methane emission Methane generation Methane oxidation Landfill Test cell Subtropical climate 

Notes

Acknowledgments

The authors want to thank Essencis Soluções Ambientais SA and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) for supporting this research.

References

  1. Abichou, T., Kormi, T., Yuan, L., Johnson, T., & Francisco, E. (2015). Modeling the effects of vegetation on methane oxidation and emissions through soil landfill final covers across different climates. Waste Management, 36, 230–340.CrossRefGoogle Scholar
  2. Abichou, T., Mahieu, K., Chanton, J., Romdhane, M., & Mansouri, I. (2011). Scaling methane oxidation: from laboratory incubation experiments to landfill cover field conditions. Waste Management, 31, 978–986.CrossRefGoogle Scholar
  3. Abichou, T., Powelson, D., Chanton, J., Escoriaza, S., & Stern, J. (2006a). Characterization of methane flux and oxidation at a solid waste landfill. Journal of Environmental Engineering, 132, 220–228.CrossRefGoogle Scholar
  4. Abichou, T., Chanton, J., Powelson, D., Fleiger, J., Escoriaza, S., Lei, Y., & Stern, J. (2006b). Methane flux and oxidation at two types of intermediate landfill covers. Waste Management, 26, 1305–1312.CrossRefGoogle Scholar
  5. Abushammala, M. F. M., Basri, N. E. A., Basri, H., Kadhum, A. A. H., & El-Shafie, A. H. (2013a). Empirical gas emission and oxidation measurement at cover soil of dumping site: example from Malaysia. Environmental Monitoring and Assessment, 185, 4919–4932.CrossRefGoogle Scholar
  6. Abushammala, M. F. M., Basri, N. E. A., & Elfithri, R. (2013b). Assessment of methane emission and oxidation at air Hitam landfill site cover soil in wet tropical climate. Environmental Monitoring and Assessment, 185, 9967–9978.CrossRefGoogle Scholar
  7. Bogner, J., Spokas, K. (1995). The landfill methane balance: model and practical applications. International Landfill Conference, Cagliari, Sardinia, Italy.Google Scholar
  8. Buhmann, M. D. (2003). Radial Basis Functions: Theory and Implementations. Cambridge University Press, page 99.Google Scholar
  9. Candiani G. (2011). Study about methane generation in a landfill test cell. Ph.D. thesis, Universidade Federal do ABC. Santo André, SP, Brazil.Google Scholar
  10. Candiani, G., Moreira, J. M. L. (2015). Estudo da geração de metano em uma célula de aterro sanitário, pages 17 and 171. Paco Editorial, Jundiaí, SP, Brazil.Google Scholar
  11. Chanton, J., Abichou, T., Langford, C., Spokas, K., Hater, G., Green, R., Goldsmith, D., & Barlaz, M. A. (2011). Observations on the methane oxidation capacity of landfill soils. Waste Management, 31, 914–925.CrossRefGoogle Scholar
  12. Chiemchaisri, C., Juanga, J. P., & Visvanathan, C. (2007a). Municipal solid waste management in Thailand and disposal emission inventory. Environmental Monitoring and Assessment, 135, 13–20.CrossRefGoogle Scholar
  13. Chiemchaisri, C., Chiemchaisri, W., Kumar, S., & Hettiaratchi, J. P. A. (2007b). Solid waste characteristics and their relationship to gas production in tropical landfill. Environmental Monitoring and Assessment, 135, 41–48.CrossRefGoogle Scholar
  14. Christophersen, M., Holst, H., Chanton, J., & Kjeldsen, P. (2001). Lateral gas transport in soil adjacent to an old landfill: factors governing emission and methane oxidation. Waste Management and Research, 19, 595–612.CrossRefGoogle Scholar
  15. De Visscher, A., & Van Cleemput, O. (2003). Simulation model for gas diffusion and methane oxidation in landfill cover soils. Waste Management, 23, 581–591.CrossRefGoogle Scholar
  16. Gonzalez-Valencia, R., Magana-Rodriguez, F., Maldonado, E., Salinas, J., & Thalasso, F. (2015). Detection of hotspots and rapid determination of methane emissions from landfills via gorund-surface method. Environmental Monitoring and Assessment, 187, 4083.CrossRefGoogle Scholar
  17. IPCC (2006). Guidelines for national greenhouse gas inventories, Solid waste disposal, Chapter 3. Intergovernmental Panel on Climate Change.Google Scholar
  18. Machado, S. L., Carvalho, M. F., Gourc, J. P., Vilar, O. M., & do Nascimento, J. C. F. (2009). Methane generation in tropical landfills: simplified methods and field results. Waste Management, 29, 153–161.CrossRefGoogle Scholar
  19. Moreira, J. M. L., Silva, E. R., & Candiani, G. (2015). Approximate estimation of landfill emissions considering methane oxidation. The Open Waste Management Journal, 8, 12–20.CrossRefGoogle Scholar
  20. PNRS (2015). Política Nacional de Resíduos Sólidos. Ministério do Meio Ambiente, Brazil. http://www.mma.gov.br/política-de-resíduos-sólido. Accessed in September 2015.
  21. Sadasivam, B. Y., & Reddy, K. R. (2014). Landfill methane oxidation in soil and bio-based cover systems: a review. Reviews in Environmental Science and Bio/Technology, 13, 79–107.CrossRefGoogle Scholar
  22. Scheutz, C., Bogner, J., Chanton, J. P., Blake, D., Morcet, M., Aran, C., & Kjeldsen, P. (2008). Atmospheric emissions and attenuations of non-methane organic compounds in cover soils at a French landfill. Waste Management, 28, 1892–1908.CrossRefGoogle Scholar
  23. Spokas, K., Bogner, J., Chanton, J. P., Morcet, M., Aran, C., Graff, C., Moreau-Le Golvan, Y., & Hebe, I. (2006). Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection system? Waste Management, 26, 516–525.CrossRefGoogle Scholar
  24. Wangyao, K., Towprayoon, S., Chiemchaisri, C., Gheewala, S. H., & Nopharatana, A. (2010). Application of the IPCC waste model to solid waste disposal sites in tropical countries: case study of Thailand. Environmental Monitoring and Assessment, 164, 249–261.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centro de Engenharia, Modelagem e Ciências Sociais AplicadasUniversidade Federal do ABCSanto AndréBrazil
  2. 2.Departamento de Ciências BiológicasUniversidade Federal de São PauloDiademaBrazil

Personalised recommendations