Advertisement

Changes in vegetation cover and composition in the Swedish mountain region

  • Henrik Hedenås
  • Pernilla Christensen
  • Johan Svensson
Article

Abstract

Climate change, higher levels of natural resource demands, and changing land use will likely lead to changes in vegetation configuration in the mountain regions. The aim of this study was to determine if the vegetation cover and composition have changed in the Swedish region of the Scandinavian Mountain Range, based on data from the long-term landscape biodiversity monitoring program NILS (National Inventory of Landscapes in Sweden). Habitat type and vegetation cover were assessed in 1740 systematically distributed permanent field plots grouped into 145 sample units across the mountain range. Horvitz–Thompson estimations were used to estimate the present areal extension of the alpine and the mountain birch forest areas of the mountain range, the cover of trees, shrubs, and plants, and the composition of the bottom layer vegetation. We employed the data from two subsequent 5-year monitoring periods, 2003–2007 and 2008–2012, to determine if there have been any changes in these characteristics. We found that the extension of the alpine and the mountain birch forest areas has not changed between the inventory phases. However, the total tree canopy cover increased in the alpine area, the cover of graminoids and dwarf shrubs and the total cover of field vegetation increased in both the alpine area and the mountain birch forest, the bryophytes decreased in the alpine area, and the foliose lichens decreased in the mountain birch forest. The observed changes in vegetation cover and composition, as assessed by systematic data in a national and regional monitoring scheme, can validate the results of local studies, experimental studies, and models. Through benchmark assessments, monitoring data also contributes to governmental policies and land-management strategies as well as to directed cause and effect analyses.

Keywords

Alpine vegetation Climate change Land use Monitoring Mountain birch forest Vegetation change 

Notes

Acknowledgments

We would like to acknowledge the Swedish Environmental Protection Agency and the county board of administration in Dalarna, Jämtland, Västerbotten, and Norrbotten both for funding this study and for fruitful discussions. Thanks to the NILS field staff for their assistance. We also thanks M. Hogg at the Semantix for improving the language.

References

  1. ACIA (2005). Arctic climate impact assessment. Cambridge: Cambridge University Press.Google Scholar
  2. Ahti, T., Hämet-Ahti, L., & Jalas, J. (1968). Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici, 5(3), 169–211.Google Scholar
  3. Arft, A. M., Walker, M. D., Gurevitch, J., Alatalo, J. M., Bret-Harte, M. S., Dale, M., et al. (1999). Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecological Monographs, 69(4), 491–511.Google Scholar
  4. Bäck, L. (2002). Friluftslivet i de svenska Lapplandsfjällen. [Outdoor life in the Swedish Lapland mountains]. Utmark, 3. [In Swedish.]Google Scholar
  5. Bafetta, F., Fattorini, L., & Corona, P. (2011). Estimation of small woodlot and tree row attributes in large-scale forest inventories. Environmental and Ecological Statistics, 18(1), 147–167.CrossRefGoogle Scholar
  6. Batllori, E., Blanco-Moreno, J. M., Ninot, J. M., Gutiérrez, E., & Carrillo, E. (2009). Vegetation patterns at the alpine treeline ecotone: the influence of tree cover on abrupt change in species composition of alpine communities. Journal of Vegetation Science, 20(5), 814–825.CrossRefGoogle Scholar
  7. Beniston, M. (2003). Climatic change in mountains regions: a review of possible impacts. Climatic Change, 59(1–2), 5–31.CrossRefGoogle Scholar
  8. Bokhorst, S., Bjerke, J. W., Tømmervik, H., Callaghan, T. V., & Phoenix, G. K. (2009). Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. Journal of Ecology, 97(6), 1408–1415.CrossRefGoogle Scholar
  9. Bryn, A., & Daugstad, K. (2001). Summer farming in the subalpine birch forest. In: F. E. Wielgolaski. (Ed.), Nordic mountain birch ecosystems. Man and Biosphere, vol. 27  (pp. 307–316). New York: Parthenon Publishing group.Google Scholar
  10. Callaghan, T. V., Jonasson, C., Thierfelder, T., Yang, Z., Hedenås, H., Johansson, M., et al. (2013). Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers. Philosophical Transactions of the Royal Society B, 368, e20120488.CrossRefGoogle Scholar
  11. Carins, D. M., & Moen, J. (2004). Herbivory influences tree lines. Journal of Ecology, 92(6), 1019–1024.CrossRefGoogle Scholar
  12. Carlsson, B., Karlsson, P. S., & Svensson, B. M. (1999). Alpine and subalpine vegetation. Acta Phytogeographica Suecica, 84, 75–89.Google Scholar
  13. Chapin III, F. S., Berman, M., Callaghan, T. V., Convey, P., Crepin, A. S., Danell, K., et al. (2005). Polar systems. In R. Hassan, R. Scholes, & N. Ash (Eds.), Ecosystems and human well-being: current state and trends, vol. 1 (pp. 717–743). Washington: Island Press.Google Scholar
  14. Christensen, P., & Ringvall, A. H. (2013). Using statistical power analysis as a tool when designing a monitoring program: experience from a large-scale Swedish landscape monitoring program. Environmental Monitoring and Assessment, 185(9), 7279–7293.CrossRefGoogle Scholar
  15. Chytrý, M., Tichý, L., Hennekens, S. M., & Schaminée, J. H. J. (2014). Assessing vegetation change using vegetation-plot databases: a risky business. Applied Vegetation Science, 17(1), 32–41.CrossRefGoogle Scholar
  16. DYNTAXA 2015. Taxonomic Database. The Swedish Species Information Centre, SLU, Uppsala. [In Swedish.] http://www.slu.se/sv/centrumbildningar-och-projekt/dyntaxa/search/. Accessed May 2015.
  17. Edenius, L., Vencatasawmy, C. P., Sandström, P., & Dahlberg, U. (2003). Combining satellite imagery and ancillary data to map snowbed vegetation important to reindeer Rangifer Tarandus. Arctic, Antarctic, and Alpine Research, 35(2), 150–157.CrossRefGoogle Scholar
  18. Eide, W. (ed.) (2014). Arter och naturtyper i habitatdirektivet – bevarandestatus i Sverige 2013. [Species and habitats in the Habitats Directive - conservation status in Sweden in 2013]. Uppsala, SE: The Swedish Species Information Centre, SLU.Google Scholar
  19. Emanuelsson, U. (1984). Ecological effects of grazing and trampling on mountain vegetation in northern Sweden. PhD Thesis. Lund, SE: University of Lund.Google Scholar
  20. Emanuelsson, U. (1987). Human influence on vegetation in the Torneträsk area during the last three centuries. Ecological Bulletins, 30, 95–111.Google Scholar
  21. Esseen, P.-A., Glimskär, A., Ståhl, G., & Sundquist, S. (2007). Field instruction for the national inventory of the landscape in Sweden. Umeå: Department of Forest Resource Management, Swedish University of Agricultural Sciences, http://www.slu.se/Documents/externwebben/s-fak/skoglig-resurshallning/Landskapsanalys_publikationer/Publikationer2003-2009/NILS_manual_f%C3%A4lt_2007_English.pdf
  22. Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., et al. (2014). Climate change 2014. Impacts, adaptation, and vulnerability. Part a: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. Franklin, J. F. (1989). Importance and justification of long-term studies in ecology. In G. E. Likens (Ed.), Long-term studies in ecology (pp. 3–19). NY: Springer.CrossRefGoogle Scholar
  24. Fridman, J., Holm, S., Nilsson, M., Nilsson, P. Hedström Ringvall, A., & Ståhl, G. (2014). Adapting National Forest Inventories to changing requirements—the case of the Swedish National Forest Inventory at the turn of the twentieth century. Silva Fennica 48(3), doi: 10.14214/sf.1095Google Scholar
  25. Gallegos Torell, A., & Glimskär, A. (2009). Computer-aided calibration for visual estimation of vegetation cover. Journal of Vegetation Science, 20(6), 973–983.CrossRefGoogle Scholar
  26. Gardfjell H. & Å. Hagner (2012). Instruktion för Habitatinventering i NILS and MOTH, 2012. [Manual for habitat monitoring, in NILS and MOTH 2012.]. Umeå SE. Department of Forest Resource Management, Swedish University of Agricultural Sciences, [In Swedish.]Google Scholar
  27. Government Offices of Sweden (2004). Environmental quality objectives: A shared responsibility. Summary of government bill 2004/05:150. Stockholm, SE: Government Offices of Sweden,Google Scholar
  28. Heberlein, T. A., Fredman, P., & Vuorio, T. (2002). Current tourism patterns in the Swedish mountain region. Mountain Research and Development, 22(2), 142–149.CrossRefGoogle Scholar
  29. Hedenås, H., Olsson, H., Jonasson, C., Bergstedt, J., Dahlberg, U., & Callaghan, T. V. (2011). Changes in tree growth, biomass and vegetation over a 13-year period in the Swedish sub-Arctic. Ambio, 40(S1), 672–682.CrossRefGoogle Scholar
  30. Hedenås, H., Carlsson, B. Å., Emanuelsson, U., Headley, A. D., Jonasson, C., Svensson, B. M., & Callaghan, T. V. (2012). Changes versus homeostasis in alpine and sub-alpine vegetation over three decades in the sub-Arctic. Ambio, 41(S3), 187–196.CrossRefGoogle Scholar
  31. Heliasz, M., Johansson, T., Lindroth, A., Molder, M., Mastepanov, M., Friborg, T., et al. (2011). Quantification of C uptake in subarctic birch forest after setback by an extreme insect outbreak. Geophysical Research Letters, 38, L01704.CrossRefGoogle Scholar
  32. Hörnfeldt, B. (2004). Long-term decline in numbers of cyclic voles in boreal Sweden: Analysis and presentation of hypotheses. Oikos, 107(2), 376–392.Google Scholar
  33. Horvitz, D. G., & Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47(260), 663–685.CrossRefGoogle Scholar
  34. Ims, R. A., Henden, J. A., & Killengreen, S. T. (2008). Collapsing population cycles. Trends in Ecology & Evolution, 23(2), 79–86.CrossRefGoogle Scholar
  35. Jepsen, J. U., Hagen, S. B., Ims, R. A., & Yoccoz, N. G. (2008). Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: Evidence of a recent outbreak range expansion. Journal of Animal Ecology, 77(2), 257–264.CrossRefGoogle Scholar
  36. Johansson, M., Christensen, T. R., Akerman, H. J., & Callaghan, T. V. (2006) What determines the current presence or absence of permafrost in the Torneträsk region, a subarctic landscape in northern Sweden?. Ambio 35(4), 190–197.Google Scholar
  37. Kaplan, J. O., & New, M. (2006). Arctic climate change with a 2 °C global warming: Timing, climate patterns and vegetation change. Climatic Change, 79(3–4), 213–241.CrossRefGoogle Scholar
  38. Karlsson, H., Hörnberg, G., Hannon, G., & Nordström, E. M. (2007). Long-term vegetation changes in the northern Scandinavian forest limit: A human impact-climate synergy? The Holocene, 17(1), 37–49.CrossRefGoogle Scholar
  39. Keith, D. A., Rodríguez, J. P., Rodríguez-Clark, K. M., Nicholson, E., Aapala, K., Alonso, A., et al. (2013). Scientific foundations for an IUCN red list of ecosystems. PloS One, 8(5), e62111.CrossRefGoogle Scholar
  40. Körner, C., Ohsawa, M., Spehn, E., Berge, E., Bugmann, H., Groombridge, B., et al. (2005). Mountain systems. In R. Hassan, R. Scholes, & A. N. (Eds.), Ecosystems and human well-being: Current state and trends, vol. 1 (pp. 681–715). Washington: Island Press.Google Scholar
  41. Kullman, L. (1979). Change and stability in the altitude of the birch tree-limit in the southern Swedish Scandes 1915-1975. Acta Phytogeographica Suecica, 65, 94–121.Google Scholar
  42. Kullman, L. (2002). Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology, 90(1), 68–77.CrossRefGoogle Scholar
  43. Kullman, L. (2010). A richer, greener and smaller alpine world: Review and projection of warming-induced plant cover change in the Swedish Scandes. Ambio, 39(2), 159–169.Google Scholar
  44. Lindenmayer, D. B., & Likens, G. E. (2010). The science and application of ecological monitoring. Biological Conservation, 143(6), 1317–1328.CrossRefGoogle Scholar
  45. Lovett, G. M., Burns, D. A., Driscoll, C. T., Jenkins, J. C., Mitchell, M. J., Rustad, L., et al. (2007). Who needs environmental monitoring? Frontiers in Ecology and the Environment, 5(5), 253–260.CrossRefGoogle Scholar
  46. Lumley T. (2004). Analysis of complex survey samples. Journal of Statistical Software, 9(8).Google Scholar
  47. Lumley T. (2010). Complex surveys. A guide to analysis using R. Wiley, NJ.Google Scholar
  48. Magnussen, S., Smith, B., & Sandoval Uribe, A. (2007). National Forest Inventories in North America for monitoring forest tree species diversity. Plant Biosystems, 141(1), 113–122.CrossRefGoogle Scholar
  49. Milberg, P., Bergstedt, J., Fridman, J., Odell, G., & Westerberg, L. (2008). Observer bias and random variation in vegetation monitoring data. Journal of Vegetation Science, 19(5), 633–644.CrossRefGoogle Scholar
  50. Moen, J., & Danell, O. (2003). Reindeer in the Swedish Mountains: An assessment of grazing impacts. Ambio, 32(6), 397–402.CrossRefGoogle Scholar
  51. Moen, J., & Lagerström, A. (2008). High species turnover and decreasing plant species richness on mountain summits in Sweden: reindeer grazing overrides climate change. Antarctic, and Alpine Research, 40(2), 382–395.CrossRefGoogle Scholar
  52. Moen, J., Aune, K., Edenius, L., & Angerbjörn, A. (2004). Potential effects of climate change on treeline position in the Swedish mountains. Ecology and Society, 9, 16.Google Scholar
  53. Nordiska ministerrådet. (1984). Vegetationstyper i Norden. [Types of vegetation in the Nordic countries.] Nordiska ministerrådet. [In Swedish.]Google Scholar
  54. Olofsson, J., Kitti, H., Rautiainen, P., Stark, S., & Oksanen, L. (2001). Effects of summer grazing by reindeer on composition of vegetation, productivity and nitrogen cycling. Ecography, 24(1), 13–24.CrossRefGoogle Scholar
  55. Olofsson, J., Oksanen, L., Callaghan, T., Hulme, P. E., Oksanen, T., & Suominen, O. (2009). Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change Biology, 15(11), 2681–2693.CrossRefGoogle Scholar
  56. Olofsson, J., Ericson, L., Torp, M., Stark, S., & Baxter, R. (2011). Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen. Nature Climate Change, 1(4), 220–223.CrossRefGoogle Scholar
  57. Olsson E. G. A., Austrheim G., & Grenne S. N. (2000). Landscape change patterns in mountains, land use and environmental diversity, Mid-Norway 1960-1993. Landscape Ecology, 15(2), 155–170.Google Scholar
  58. Östlund, L., Hörnberg, G., DeLuca, T. H., Liedgren, L., Wikström, P., Zackrisson, O., & Josefsson, T. (2015). Intensive land use in the Swedish mountains between AD 800 and 1200 led to deforestation and ecosystem transformation with long-lasting effects. Ambio, 44(6), 508–520.Google Scholar
  59. Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J. L. B., et al. (2012). Recent plant diversity changes on Europe’s mountain summits. Science, 336(6079), 353–355.Google Scholar
  60. Pearson, R. G., Phillips, S. J., Loranty, M. M., Beck, P. S. A., Damoulas, T., Knight, S. J., & Goetz, S. J. (2013). Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change, 3(7), 673–677.CrossRefGoogle Scholar
  61. Rundqvist, S., Hedenås, H., Sandström, A., Emanuelsson, U., Eriksson, H., Jonasson, C., & Callaghan, T. V. (2011). Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. Ambio, 40(S1), 683–692.CrossRefGoogle Scholar
  62. Sandström P. (2015). A toolbox for co-production of knowledge and improved land use dialogues. The perspective of reindeer husbandry. PhD Thesis. Umeå, SE: Swedish University of Agricultural Sciences.Google Scholar
  63. Särndal, C. E., Swensson, B., & Wretman, J. (2003). Modell assisted survey sampling. NY: Springer-Verlag.Google Scholar
  64. SEPA (2014). Förslag till en strategi för miljökvalitetsmålet Storslagen fjällmiljö. Redovisning av ett regeringsuppdrag. [Proposal for a strategy for the environmental quality objective “A magnificent mountain landscape”. Recognition of a governmental commission.] Skrivelse 2014–06-05. NV 04–173-13. Stockholm, SE: SEPA. [In Swedish.]Google Scholar
  65. Sjörs H. (1967). Nordisk växtgeografi. [Nordic plant geography.] 2nd ed. Stockholm, SE: Svenska Bokförlaget, [In Swedish.]Google Scholar
  66. Sjörs, H. (1999). The background: Geology, climate, and zonation. Acta Phytogeographica Suecica, 84, 5–14.Google Scholar
  67. Speed, J. D. M., Austrheim, G., Hester, A. J., & Mysterud, A. (2012). Elevational advance of alpine plant communities is buffered by herbivory. Journal of Vegetation Science, 23(4), 617–625.CrossRefGoogle Scholar
  68. Ståhl, G., Allard, A., Esseen, P.-A., Glimskär, A., Ringvall, A., Svensson, J., et al. (2011). National Inventory of Landscapes in Sweden NILS-scope, design, and experiences from establishing a multiscale biodiversity monitoring system. Environmental Monitoring and Assessment, 173(1–4), 579–595.CrossRefGoogle Scholar
  69. Tasser, E., & Tappeiner, U. (2009). Impact of land use changes on mountain vegetation. Applied Vegetation Science, 5(2), 173–184.CrossRefGoogle Scholar
  70. Theurillat, J.-P., & Guisan, A. (2001). Potential impact of climate change on vegetation in the European alps: A review. Climatic Change, 50(1–2), 77–109.CrossRefGoogle Scholar
  71. Van Bogaert, R., Jonasson, C., De Dapper, M., & Callaghan, T. V. (2010). Range expansion of thermophilic aspen (Populus tremula L.) in sub-Arctic Sweden. Arctic, Antarctic, and Alpine Research, 42(3), 362–375.CrossRefGoogle Scholar
  72. Van Bogaert, R., Haneca, K., Hoogesteger, J., Jonasson, C., De Dapper, M., & Callaghan, T. V. (2011). A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of twentieth century climate warming. Journal of Biogeography, 38(5), 907–921.CrossRefGoogle Scholar
  73. Virtanen, R., Luoto, M., Rämä, T., Mikkola, K., Hjort, J., Grytnes, J.-A. & Birks H. J. B. (2010). Recent vegetation changes at the high altitude tree line ecotone are controlled by geomorphological disturbance, productivity and diversity. Global Ecology and Biogeography, 19(6), 810–821.Google Scholar
  74. von Sydow, U. (1988). Gräns för storskaligt skogsbruk i fjällnära skogar: Förslag till naturvårdsgräns. [Border for large-scale forest management in montane forests: Proposal of a new border for nature concern.] Stockholm, SE: Svenska naturskyddsföreningen. [In Swedish.]Google Scholar
  75. Walker, M. D., Wahren, C. H., Hollister, R. D., Henry, G. H. R., Ahlquist, L. E., Alatalo, J. M., et al. (2006). Plant community response to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences, 103(5), 1342–1346.CrossRefGoogle Scholar
  76. Walther, G. R., Beissner, S., & Burga, C. A. (2005). Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16(5), 541–548.CrossRefGoogle Scholar
  77. When, S., & Olsson, W. G. A. (2015). Performance of the endemic alpine herb Primula scandinavia in a changing European mountain landscape. Annales Botanici Fennici, 52(3–4), 171–180.CrossRefGoogle Scholar
  78. Wielgolaski, F. E. (2005). Plant ecology herbivory, and human impact in Nordic mountain birch forests. Berlin: Springer.Google Scholar
  79. Wilson, S. D., & Nilsson, C. (2009). Arctic and alpine vegetation change over years. Global Change Biology, 15(7), 1676–1684.CrossRefGoogle Scholar
  80. Wipf, S., Stockli, V., Herz, K., & Rixen, C. (2013). The oldest monitoring site of the alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecology and Diversity, 6(3–4), 447–455.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Forest Resource ManagementSwedish University of Agricultural SciencesUmeåSweden
  2. 2.Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden

Personalised recommendations