Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, México

  • Mónica I. Martínez-Acuña
  • Marisa Mercado-Reyes
  • Jorge A. Alegría-Torres
  • José J. Mejía-SaavedraEmail author


Zacatecas state is located in the central area of Mexico, where the underground water contains elevated quantities of natural arsenic and fluoride. In order to estimate health risk associated with human exposure to these pollutants, tap water samples from the southern-central region of the state were analyzed. Ninety percent of the samples exceeded the levels of arsenic established by the World Health Organization (WHO) of 0.01 mg/L and 43 % exceeded the limit established by the NOM-127-SSA11 of 0.025 mg/L. Forty-three percent of the samples had fluoride levels above the Mexican regulation limit of 1.5 mg/L (NOM-127-SSA1). We used WHO and EPA’s health risk assessment method, we estimated 80 % of the inhabitants of sites studied could be exposed to arsenic levels higher than those recommended by EPA and the WHO, 22 % could be exposed to fluoride levels higher than those recommended by EPA, and 16 % of the local population may be in risk of suffering dental fluorosis.


Arsenic Fluoride Water Risk assessment 


  1. Armienta, M. A., Finkelman, R. B., & Rubio Arias, H. (2013). Medical geology: its relevance to Mexico. TecnoCiencia Chihuahua, VII(3), 152–162.Google Scholar
  2. ATSDR, 2005. Appendix F : Derivation of comparison values. Agency for Toxic Substances and Disease Registry, 0. Available at: [Accessed November 28, 2015]
  3. ATSDR, 2003a. Public health statement: toxicological profile for fluorides, hydrogen fluoride, and fluorine. Available at:
  4. ATSDR, 2007a. ToxGuide for arsenic as CAS # 7440-38-2, Agency for Toxic Substances and Disease Registry. Available at:
  5. ATSDR, 2003b. ToxGuide for fluorides, hydrogen fluoride, and fluorine., Agency for Toxic Substances and Disease Registry. Available at:
  6. ATSDR, 2007b. Toxicological profile for arsenic. In ATSDR’s Toxicological Profiles. Agency for Toxic Substances and Disease Registry, p. 24. Available at:
  7. Betancourt-Lineares, A., et al. (2013). Prevalencia de fluorosis dental en localidades mexicanas ubicadas en 27 estados y el D.F. a seis años de la publicación de la Norma Oficial Mexicana para la fluoruración de la sal. Revista de Investigación Clínica, 65(3), 237–247.Google Scholar
  8. Buchhamer, E. E., et al. (2012). Environmental risk assessment of arsenic and fluoride in the Chaco Province, Argentina: research advances.Journal of Toxicology and Environmental Health. Part A, 75(22-23), 1437–1450. Available at: Scholar
  9. Bundschuh, J., et al. (2012). One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2–35. Available at: Scholar
  10. CDC. (2015). U.S. public health service recommendation for fluoride concentration in drinking water for the prevention of dental caries. Reports and Recommendations Public Health Reports, 130(1), 1–14.Google Scholar
  11. Choi, A. L., et al. (2012). Developmental fluoride neurotoxicity: a systematic review and meta-analysis. Environmental Health Perspectives, 120(10), 1362–1368.Google Scholar
  12. CONAGUA, 2015. Determinación de la Disponibilidad de Agua en el Acuífero Guadalupe-Bañuelos, Estado de Zacatecas, Available at:
  13. Cotruvo, J. A. (1988). Drinking water standards and risk assessment. Regulatory Toxicology And Pharmacology, 8(March), 288–299.Google Scholar
  14. Del Razo, L. M., et al. (2011). Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapán and Lagunera regions in Mexico. Environmental health : a global access science source, 10(1), 73. Available at: Scholar
  15. Díaz Barriga, F., 1999. Metodología de identificación y evaluación de riesgos para la salud en sitios contaminados, Available at:
  16. EPA, 1994. Method 200.7: Determination of metals and trace elements in water and wastes office of research and development, Available at:
  17. EPA, 2007. Method 3015A: Microwave assisted acid digestion of aqueous samples and extracts, Available at:
  18. EPA. (2002). National primary drinking water regulations: long term 1 enhanced surface water treatment rule. Final Rule. Federal Register, 67(9), 1811–1844. Available at: Scholar
  19. EPA. (2014a). Probabilistic risk assessment to inform decision making : frequently asked questions EPA/100/R-ed. Washington, D.C.: Risk Assesment Forum, Office of the Science Advisor, USEPA. Available at: Scholar
  20. EPA, 2001. Risk assessment guidance for superfund (RAGS) volume III—part A: process for conducting probabilistic risk assessment, AppendixB, Available at:
  21. Ghose, N., et al. (2014). Role of folic acid on symptoms of chronic arsenic toxicity. International Journal of Preventive Medicine, 5(1), 89–98.Google Scholar
  22. González-Dávila, O. (2011). Assessment of the exposure to arsenic and fluoride from drinking water in the city of Guadalupe, Zacatecas (pp. 1–8). Mexico: World Congress on Water, Climate and Energy.Google Scholar
  23. González-Horta, C., et al. (2015). A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. International Journal of Environmental Research and Public Health, 12(5), 4587–4601. Available at: Scholar
  24. Grimaldo, M., et al. (1995). Endemic fluorosis in San Luis Potosi, Mexico. I. Identification of risk factors associated with human exposure to fluoride. Environmental Research, 68, 25–30.Google Scholar
  25. Hernández L, Stern D, Tolentino L, Espinosa J, Barquera S. (2012) Consumo de agua en la población infantil y adolescente. Cuernavaca, México: Instituto Nacional de Salud Pública. Available at: ISBN 978-607-511-040-0
  26. Herrera-Toledo, C., 2012. Análisis del Uso y Manejo de los Recursos Hídricos en el Estado de Zacatecas, Zacatecas: Banco Mundial. Available at:
  27. Huang, X., et al. (2015). Different choices of drinking water source and different health risks in a rural population living near a lead/zinc mine in Chenzhou City, southern China. International Journal of Environmental Research and Public Health, 12(11), 14364–14381.Google Scholar
  28. IARC. (2011). Arsenic and arsenic compounds. Monographs on the Evaluation of Carcinogenic Risks to Humans, 100(C), 41–93.Google Scholar
  29. Ilizaliturri, C. A., et al. (2009). Revisión de las metodologías sobre evaluación de riesgos en salud para el estudio de comunidades vulnerables en América Latina. Interciencias, 34(2405), 710–717.Google Scholar
  30. Irigoyen-Camacho, M. E., et al. (2016). Nutritional status and dental fluorosis among schoolchildren in communities with different drinking water fluoride concentrations in a central region in Mexico. Science of the Total Environment, 541, 512–519. Available at: Scholar
  31. IRIS, 1988. Arsenic, inorganic ; CASRN 7440-38-2, Integrated risk information system. Available at:
  32. IRIS, 1987. Fluorine (soluble fluoride) ; CASRN 7782-41-4, Integrated risk information system. Available at:
  33. Jarquín-Yañez, L., et al. (2015). Association between urine fluoride and dental fluorosis as a toxicity factor in a rural community in the state of San Luis Potosi. TheScientificWorldJOURNAL, 2015, 647184. Available at: Scholar
  34. Jha, S. K., et al. (2013). Fluoride in groundwater: toxicological exposure and remedies. Journal of Toxicology and Environmental Health, Part B, 16(1), 52–66. Available at: Scholar
  35. Kurzius-Spencer, M. et al., 2015. Relation of dietary inorganic arsenic to serum matrix metalloproteinase-9 (MMP-9) at different threshold concentrations of tap water arsenic. Journal of exposure science & environmental epidemiology, pp.1–7. Available at:; doi: 10.1038/jes.2014.92.
  36. Leal-Ascencio, M.T., 2006. Evaluación de Acuíferos de la Mesa del Norte. In memories V Congreso Internacional y XI Congreso Nacional de Ciencias Ambientales. Oaxtepec, Mor. México, 9. Available at: [Accessed November 28, 2015].
  37. Lu, Y., et al. (2000). Effect of high-fluoride water on intelligence in children. Fluoride, 33(2), 74–78.Google Scholar
  38. Mariño, R. (2013). The prevalence of fluorosis in children is associated with naturally occurring water fluoride concentration in Mexico.Journal of Evidence Based Dental Practice, 13(3), 100–101. Available at: Scholar
  39. Martin, E., et al. (2015). Metabolomic characteristics of arsenic-associated diabetes in a prospective cohort in Chihuahua, Mexico.Toxicological Sciences, 144(2), 338–346. Available at: Scholar
  40. McClintock, T. R., et al. (2012). Arsenic exposure in Latin America: biomarkers, risk assessments and related health effects. Science of the Total Environment, 429, 76–91. Available at: doi: 10.1016/j.scitotenv.2011.08.051.
  41. Merola, R. B., et al. (2015). Arsenic exposure to drinking water in the Mekong Delta. The Science of the Total Environment, 511, 544–552. Available at: [Accessed November 12, 2015].Google Scholar
  42. Mojarro-Davila, F., De León-Mojarro, Bemjamín, Júnez-Ferreira, H. E., & Bautista-Capetillo, C. F. (2013). Agua subterránea en Zacatecas 1st ed. Zacatecas, México: UAZ.Google Scholar
  43. ODEQ (1999). Guidance for use of probabilistic analysis in human health risk. Portland, Oregon, United States: Oregon Departament of Environmental Quality. Available at:
  44. Ortiz Perez, D., Rodríguez Martínez, M., Martínez, F., Borja Aburto, V. H., Castelo, J., Grimaldo, J. I., & Díaz Barriga, F. (2003). Fluoride-induced disruption of reproductive hormones in men. Environmental Research, 93(1), 20–30. doi: 10.1016/S0013-9351(03)00059-8.Google Scholar
  45. Ortega, A. (2009). Presencia, distribución, hidrogeoquímica y origen de arsénico, fluoruro y otros elementos traza disueltos en agua subterránea, a escala de cuenca hidrológica tributaria de Lerma-Chapala, México.Revista Mexicana de Ciencias Geologicas, 26, 143–161.Google Scholar
  46. Padilla-reyes, D. A., et al. (2012). Calidad del agua del acuífero Guadalupe-Bañuelos, Estado de Zacatecas, México. Geos, 32(2), 367–384.Google Scholar
  47. Hunter, P. R., & Fewtrell, L. (2001). Acceptable risk. In J. B. Lorna Fewtrell (Ed.), Water quality: guidelines, standards and health (pp. 207–227). London, UK: IWA.Google Scholar
  48. Pinedo-Vega, J. et al., 2014. Incidencia de cáncer de piel en Zacatecas. Revista Medica Instituto Mexicano del Seguro Social, 52(492). México. Available at:
  49. Rager, J. E., et al. (2014). Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environmental and Molecular Mutagenesis, 55(3), 196–208. Available at: Scholar
  50. Rango, T., et al. (2014). Fluoride exposure from groundwater as reflected by urinary fluoride and children’s dental fluorosis in the Main Ethiopian Rift Valley. Science of the Total Environment, 496, 188–197. Available at: Scholar
  51. Rocha Amador, D., et al. (2007). Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cadernos de saude publica / Ministerio da Saude, Fundacao Oswaldo Cruz, Escola Nacional de Saude Publica, 23(Suppl 4), S579–S587.Google Scholar
  52. SCFI, 2001. NMX-AA-077-SCFI-2001 Determinación de Fluoruros en Aguas Naturales, Residuales y Residuales Tratadas., Available at:
  53. Smeester, L., et al. (2011). Epigenetic changes in individuals with arsenicosis. Chemical Research in Toxicology, 24(2), 165–167. Available at: Scholar
  54. SSA, 2000. Modificación a la Norma Oficial Mexicana NOM-127-SSA1-1994, “Salud Ambiental, Agua para Uso y Consumo Humano- Limites permisibles de Calidad y Tratamientos a que debe someterse al Agua para su Potabilización, Available at:
  55. SSA, 2002. NOM-230-SSA1-2002, Salud ambiental. Agua para uso y consumo humano, requisitos sanitarios que se deben cumplir en los sistemas de abastecimiento públicos y privados durante el manejo del agua. Procedimientos sanitarios para el muestreo., Available at:
  56. Tsuji, J. S., et al. (2014). Association of low-level arsenic exposure in drinking water with cardiovascular disease: a systematic review and risk assessment. Toxicology, 323, 78–94. Available at: Scholar
  57. Tyler, C. R., & Allan, A. M. (2014). The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Current Environmental Health Reports, 1(2), 132–147. Available at: Scholar
  58. Valenzuela, O. L., et al. (2009). Association of AS3MT polymorphisms and the risk of premalignant arsenic skin lesions. Toxicology and Applied Pharmacology, 239(2), 200–207. Available at: = pubmed&id = 19538983&retmode = ref&cmd = prlinks\npapers3://publication/doi/10.1016/j.taap.2009.06.007\n Scholar
  59. Vega, S. (2002). Riesgo sanitario ambiental por la presencia de arsénico y fluoruros en los acuíferos de México (p. 15). México: Comisión Nacional del Agua. Gerencia de Saneamiento y Calidad del Agua.Google Scholar
  60. Wang, S.-X., et al. (2007). Arsenic and fluoride exposure in drinking water: children’s iq and growth in Shanyin County, Shanxi Province, China. Environmental Health Perspectives, 115(4), 643–647. Available at: Scholar
  61. Wang, W., Cheng, S., & Zhang, D. (2014). Association of inorganic arsenic exposure with liver cancer mortality: a meta-analysis. Environmental Research, 135, 120–125. Available at: Scholar
  62. WHO, 2011. Arsenic in drinking-water. Background document for development of WHO guidelines for drinking-water quality. World Health Organization, Geneva, Switzerland. Available at:
  63. WHO, 2004. Fluoride in drinking-water background document for development of WHO guidelines for drinking-water quality, World Health Organization, Geneva, Switzerland. Available at:
  64. WHO. (2006). Guidelines for drinking-water quality. In First Addendum to Thrd Edition (3rd ed.). Switzerland: World Health Organization.Google Scholar
  65. Zhang, S., et al. (2015). Modifying effect of COMT gene polymorphism and a predictive role for proteomics analysis in children’s intelligence in endemic fluorosis area in Tianjin, China. Toxicological Sciences, 144(2), 238–245. Available at: Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mónica I. Martínez-Acuña
    • 1
  • Marisa Mercado-Reyes
    • 2
  • Jorge A. Alegría-Torres
    • 3
  • José J. Mejía-Saavedra
    • 4
    Email author
  1. 1.Unidad Académica de Ciencias QuímicasUniversidad Autónoma de ZacatecasZacatecasMexico
  2. 2.Unidad Académica de Ciencias BiológicasUniversidad Autónoma de ZacatecasZacatecasMexico
  3. 3.Laboratorio de Investigación Molecular en Nutrición LIMONUniversidad del Centro de MéxicoSan Luis PotosíMexico
  4. 4.Toxicología Ambiental, CIACYT-MedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations