Determination of steroidal oestrogens in tap water samples using solid-phase extraction on a molecularly imprinted polymer sorbent and quantification with gas chromatography-mass spectrometry (GC-MS)

  • D. ZacsEmail author
  • I. Perkons
  • V. Bartkevics


An analytical method was established and validated for the analysis of steroidal oestrogens in tap water samples. Gas chromatography coupled to high-resolution mass spectrometry (GC-HRMS) and gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) were used for the identification/quantification of selected compounds and the analytical performance of these techniques was evaluated. Liquid-liquid extraction (LLE) and solid-phase extraction (SPE) with a molecularly imprinted polymer (MIP) stationary phase that was highly selective for oestrogens were used for the extraction of 100-mL aliquots of water samples. The recoveries of analytes with the described methods ranged from 92 to 114 %, while the repeatability in terms of relative standard deviations (RSDs) was in the range from 2.1 to 15.2 % (n = 5). It was concluded that SPE with MIP that was highly selective for oestrogens in combination with GC-HRMS detection is more preferable for the analysis of oestrogens in tap water samples. The typical oestrogen, 17β-estradiol (17β-E2), was detected above the method limit of quantification (m-LOQ) in 5 of 14 analysed tap water samples at concentrations from 0.09 to 0.15 ng L−1. Despite that 17α-ethynylestradiol (17α-EE2) was not quantified in this study above m-LOQ, the presence of this chemical was qualitatively confirmed in some of the analysed samples.


Steroidal oestrogens Solid-phase extraction Molecularly imprinted polymer Gas chromatography-tandem mass spectrometry Gas chromatography-high-resolution mass spectrometry 



This study has received funding from the project “Establishing of the scientific capacity for the management of pharmaceutical products residues in the environment of Latvia and Norway” co-financed by Norwegian Financial Mechanism 2009–2014, Contract No. NFI/R/2014/010.


  1. Adler, P., Steger-Hartmann, T., & Kalbfus, W. (2001). Vorkommen natürlicher und synthetischer östrogener Steroide in Wässern des süd- und mitteldeutschen Raumes. Acta Hydrochimica et Hydrobiologica. doi: 10.1002/1521-401X(200111)29:4<227::AID-AHEH227>3.0.CO;2-R.Google Scholar
  2. Andersson, A. M., & Skakkebaek, N. E. (1999). Exposure to exogenous estrogens in food: possible impact on human development and health. European Journal of Endocrinology. doi: 10.1530/eje.0.1400477.Google Scholar
  3. Avery, M. J. (2003). Quantitative characterization of differential ion suppression on liquid chromatography/atmospheric pressure ionization mass spectrometric bioanalytical methods. Rapid Communications in Mass Spectrometry. doi: 10.1002/rcm.895.Google Scholar
  4. Barreiros, L., Queiroz, J. F., Magalhaes, L. M., Silva, A. M. T., & Segundo, M. A. (2016). Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices—a review. Microchemical Journal. doi: 10.1016/j.microc.2015.12.003.Google Scholar
  5. Beardmore, J. A., Mair, G. C., & Lewis, R. I. (2001). Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects. Aquaculture. doi: 10.1016/S0044-8486(01)00590-7.Google Scholar
  6. Bila, D., Montalvao, A.F., Azevedo, D. de A., & Dezotti, M. (2007). Estrogenic activity removal of 17-estradiol by ozonation and identification of by-products. Chemosphere, doi: 10.1016/j.chemosphere.2007.05.016.
  7. Bouman, A., Heineman, M.J., & M.M. Faas, M.M. (2005). Sex hormones and the immune response in humans. Human Reproduction Update, doi: 10.1093/humupd/dmi008.
  8. Caban, M., Lis, E., Kumirska, J., & Stepnowski, P. (2015). Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS (SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. The Science of the Total Environment. doi: 10.1016/j.scitotenv.2015.08.076.Google Scholar
  9. Camilleri, J., Baudot, R., Wiest, L., Vulliet, E., Cren-Olive, C., & Daniele, G. (2015). Multiresidue fully automated online SPE-HPLC-MS/MS method for the quantification of endocrine-disrupting and pharmaceutical compounds at trace level in surface water. International Journal of Environmental Analytical Chemistry. doi: 10.1080/03067319.2014.983494.Google Scholar
  10. D’Ascenzo, G., Di Corcia, A., Gentili, A., Mancini, R., Mastropasqua, R., Nazzari, M., et al. (2007). Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. The Science of the Total Environment. doi: 10.1016/S0048-9697(02)00342-X.Google Scholar
  11. Diaz-Cruz, M. S., de Alda, M. J. L., Lopez, R., & Barcelo, D. (2003). Determination of estrogens and progestogens by mass spectrometric techniques (GC/MS, LC/MS and LC/MS/MS). Journal of Mass Spectrometry. doi: 10.1002/jms.529.Google Scholar
  12. European Commission (2014). Commission regulation 589/2014 of 2 June 2014 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing regulation (EU) no 252/2012. Official Journal of the European Commission, L164, 18–40.Google Scholar
  13. European Commission (2013). Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Commission, L226, 1–17.Google Scholar
  14. Fine, D. D., Breidenbach, G. P., Price, T. L., & Hutchins, S. R. (2003). Quantitation of estrogens in ground water and swine lagoon samples using solid-phase extraction, pentafluorobenzyl/trimethylsilyl derivatizations and gas chromatography–negative ion chemical ionization tandem mass spectrometry. Journal of Chromatography A. doi: 10.1016/j.chroma.2003.08.021.Google Scholar
  15. Foreman, W.T., Gray, J.L., Revello, R.C., Lindley, C.E., & Losche, S.A. (2013). An isotope-dilution standard GC/MS/MS method for steroid hormones in water. In: Evaluating Veterinary Pharmaceutical Behavior in the Environment, ACS, Washington, DC.Google Scholar
  16. Gomes, R. L., Scrimshaw, M. D., & Lester, J. N. (2003). Determination of endocrine disrupters in sewage treatment and receiving waters. Trends in Analytical Chemistry. doi: 10.1016/S0165-9936(03)01010-0.Google Scholar
  17. Kelly, C. (2000). Analysis of steroids in environmental water samples using solid-phase extraction and ion-trap gas chromatography–mass spectrometry and gas chromatography–tandem mass spectrometry. Journal of Chromatography A. doi: 10.1016/S0021-9673(99)01261-3.Google Scholar
  18. Kidd, K. A., Blanchfield, P. J., Mills, K. H., Palace, V. P., Evans, R. E., Lazorchak, J. M., et al. (2007). Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences of the United States of America. doi: 10.1073/pnas.0609568104.Google Scholar
  19. Kozlowska-Tylingo, K., Konieczka, P., Gustaw, E., Wasik, A., & Namiesnik, J. (2014). Comparison of high performance liquid chromatography methods with different detectors for determination of steroid hormones in aqueous matrices. Analytical Letters. doi: 10.1080/00032719.2013.874014.Google Scholar
  20. Kuch, H. M., & Ballschmiter, K. (2001). Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environmental Science and Technology. doi: 10.1021/es010034m.Google Scholar
  21. Kumar, R., Gaurav, H., Malik, A. K., Kabir, A., & Furton, K. G. (2014). Efficient analysis of selected estrogens using fabric phase sorptive extraction and high performance liquid chromatography-fluorescence detection. Journal of Chromatography A. doi: 10.1016/j.chroma.2014.07.013.Google Scholar
  22. Lin, Y., Shi, Y., Jiang, M., Jin, Y., Peng, Y., Lu, B., et al. (2008). Removal of phenolic estrogen pollutants from different sources of water using molecularly imprinted polymeric microspheres. Environmental Pollution. doi: 10.1016/j.envpol.2007.08.001.Google Scholar
  23. Lucci, P., Nunez, O., & Galceran, M. T. (2011). Solid-phase extraction using molecularly imprinted polymer for selective extraction of natural and synthetic estrogens from aqueous samples. Journal of Chromatography A. doi: 10.1016/j.chroma.2011.02.007.Google Scholar
  24. Matsui, S., Takigami, H., Matsuda, T., Taniguchi, N., Adachi, J., Kawami, H., et al. (2000). Estrogen and estrogen mimics contamination in water and the role of sewage treatment. Water Science and Technology, 42(12), 173.Google Scholar
  25. Meng, Z., Chen, W., & Mulchandani, A. (2005). Removal of estrogenic pollutants from contaminated water using molecularly imprinted polymers. Environmental Science and Technology. doi: 10.1021/es0505292.Google Scholar
  26. Mills, L. J., & Chichester, C. (2005). Review of evidence: are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? The Science of the Total Environment. doi: 10.1016/j.scitotenv.2004.12.070.Google Scholar
  27. Noppe, H., de Wasch, K., Poelmans, S., van Hoof, N., Verslycke, T., Janssen, C. R., et al. (2005). Development and validation of an analytical method for detection of estrogens in water. Analytical and Bioanalytical Chemistry. doi: 10.1007/s00216-005-3174-8.Google Scholar
  28. Organtini, K. L., Haimovici, L., Jobst, K. J., Reiner, E. J., Ladak, A., Stevens, D., et al. (2015). Comparison of atmospheric pressure ionization gas chromatography-triple quadrupole mass spectrometry to traditional high-resolution mass spectrometry for the identification and quantification of halogenated dioxins and furans. Analytical Chemistry. doi: 10.1021/acs.analchem.5b01705.Google Scholar
  29. Sanbe, H., & Haginaka, J. (2003). Uniformly sized molecularly imprinted polymers for bisphenol A and b-estradiol: retention and molecular recognition properties in hydro-organic mobile phases. Journal of Pharmaceutical and Biomedical Analysis. doi: 10.1016/S0731-7085(02)00526-5.Google Scholar
  30. Sojo, L., Lum, G., & Chee, P. (2003). Internal standard signal suppression by co-eluting analyte in isotope dilution LC-ESI-MS. Analyst. doi: 10.1039/B209521C.Google Scholar
  31. Solomon, G. M., & Schettler, T. (2000). Environment and health: 6. Endocrine disruption and potential human health implications. Canadian Medical Association Journal, 163, 1471–1476.Google Scholar
  32. U.S. EPA Method 1698 (2007). Steroids and hormones in water, soil, sediment, and biosolids by HRGC/HRMS. Washington, D.C.: USEPA Office of science and technology engineering and analysis division.Google Scholar
  33. Van Hout, M., Niederlander, H., de Zeeuw, R., & de Jong, G. (2003). Ion suppression in the determination of clenbuterol in urine by solid-phase extraction atmospheric pressure chemical ionisation ion-trap mass spectrometry. Rapid Communications in Mass Spectrometry. doi: 10.1002/rcm.908.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of LatviaRigaLatvia

Personalised recommendations