Seasonal and size-related variation of subcellular biomarkers in quagga mussels (Dreissena bugensis) inhabiting sites affected by moderate contamination with complex mixtures of pollutants

  • A. Ács
  • Á. Vehovszky
  • J. Győri
  • A. FarkasEmail author


The size-related differences in subcellular biomarker responses were assessed in Dreissena bugensis mussels inhabiting harbours moderately affected by pollution with complex mixtures of heavy metals and polycyclic aromatic hydrocarbons (PAHs). Adult D. bugensis samples were collected from three harbours of Lake Balaton (Hungary) characterized by moderate shipping activity, and as reference site, from a highly protected remote area of the lake. Biomarkers of exposure (metallothioneins (MTs), ethoxyresorufin-o-deethylase (EROD)), oxidative stress (lipid peroxidation (LPO), DNA strand breaks (DNAsb)) and possible endocrine disruption (vitellogenin-like proteins (VTG)) were analysed in whole-tissue homogenates of differently sized groups of mussels in relation to environmental parameters and priority pollutants (heavy metals and polycyclic aromatic hydrocarbons). Integrated biomarker response (IBR) indices were calculated for biomarker responses gained through in situ measurements to signalize critical sites and to better distinguish natural tendencies from biological effects of contaminants. Biomarker responses showed close positive correlation in case of MT, EROD, LPO, and DNAsb and negative correlation with VTG levels with mussel shell length in autumn, when higher levels of biomarkers appeared, possibly due to natural lifecycle changes of animals.


Dreissena bugensis Integrated biomarker response Biochemical markers Metallothionein-like proteins Ethoxyresorufin-O-deethylase (EROD) DNA damage Lipid peroxidation (LPO) 



This research was supported by the Postdoctoral Academic Programme of the Hungarian Academy of Sciences and cofinanced by a grant from the Balaton Project of the Office of the Prime Minister of Hungary (MEH).

Supplementary material

10661_2016_5432_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 20 kb)


  1. Ács, A., Imre, K., Kiss, G., Csaba, J., Győri, J., Vehovszky, Á., & Farkas, A. (2015). Evaluation of Multixenobiotic resistance in dreissenid mussels as a screening tool for toxicity in freshwater sediments. Archives of Environmental Contamination and Toxicology, 68, 707–717.CrossRefGoogle Scholar
  2. Astley, K. N., Meigh, H. C., Glegg, G. A., Braven, J., & Depledge, M. H. (1999). Multi-variate analysis of biomarker responses in Mytilus edulis and Carcinus maenas from the Tees Estuary (UK). Marine Pollution Bulletin, 39(1–12), 145–154.CrossRefGoogle Scholar
  3. Barhoumi, S., Messaudi, I., Gagné, F., & Kerkeni, A. (2012). Spatial and seasonal variability of some biomarkers in Salaria basilica (Pisces: Blennidae): Implication for biomonitoring in Tunisian coasts. Ecological Indicators, 14, 222–228.Google Scholar
  4. Beliaeff, B., & Burgeot, T. (2002). Integrated biomarker response (IBR): a useful tool for ecological risk assessment. Environmental Toxicology and Chemistry, 21, 1316–1322.CrossRefGoogle Scholar
  5. Bester, M. J., Potgieter, H. C., & Vermaak, W. J. H. (1994). Cholate and pH reduce interference by SDS in the determination of DNA with Hoescht. Analytical Biochemistry, 223, 299–305.Google Scholar
  6. Bij de Vaate, A., Van der Velde, G., Leuven, R. S. E. W., Heiler, K. C. M. (2014). Spread of the quagga mussel, Dreissena rostriformis bugensis in Western Europe. In T. F. Nalepa, D. W. Schloesser (Eds.), Quagga and Zebra mussels: Biology, Impacts, and Control, second ed. (pp. 83–92). Florida: CRC Press, Taylor & Francis Group, Boca Raton.Google Scholar
  7. Binelli, A., Cogni, D., Parolini, M., & Provini, A. (2010). Multi-biomarker approach to investigate the state of contamination of the R. Lambro/R. Po confluence (Italy) by zebra mussel (Dreissena polymorpha). Chemosphere, 79, 518–528.CrossRefGoogle Scholar
  8. Binelli, A., Ricciardi, F., Riva, C., & Provini, A. (2005). Screening of POP pollution by AChE and EROD activities in zebra mussels from the Italian Great Lakes. Chemosphere, 61(8), 1074–1082.CrossRefGoogle Scholar
  9. Binelli, A., Ricciardi, F., Riva, C., & Provini, A. (2006). New evidences for old biomarkers: effects of several xenobiotics on EROD and AChE activities in zebra mussel (Dreissena polymorpha). Chemosphere, 62(4), 510–519.CrossRefGoogle Scholar
  10. Blaise, C., Gagné, F., Pellerin, J., & Hansen, P. D. (1999). Measurement of vitellogenin-like properties in the hemolymph of Mya arenaria (Saguenay Fjord, Canada) : a potential biomarker for endocrine disruption. Environmental Toxicology, 14(5), 455–465.CrossRefGoogle Scholar
  11. Bocchetti, R., & Regoli, F. (2006). Seasonal variability of oxidative biomarkers, lysosomalparameters, metallothioneins and peroxisomal enzymes in the Mediterraneanmussel Mytilus galloprovincialis from Adriatic Sea. Chemosphere, 65, 913–921.CrossRefGoogle Scholar
  12. Bocchetti, R., Fattorini, D., Pisanelli, B., Macchia, S., Oliviero, L., Pilato, F., Pellegrini, D., & Regoli, F. (2008). Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas. Aquatic Toxicology, 89(4), 257–266.CrossRefGoogle Scholar
  13. Bodnár, E., Polyák, K., & Hlavay, J. (2005). Material transport between the atmosphere and sediment of the Lake Balaton. Microchemical Journal, 79, 221–230.CrossRefGoogle Scholar
  14. Bradford, M. (1976). A rapid and sensitive assay of protein utilizing the principle of dye binding. Analytical Biochemistry, 772, 242–264.Google Scholar
  15. Broeg, K., & Lehtonen, K. K. (2006). Indices for the assessment of environmental pollution of the Baltic Sea coasts: integrated assessment of a multi-biomarker approach. Marine Pollution Bulletin, 53, 508–522.CrossRefGoogle Scholar
  16. Bruner, K. A., Fischer, S. W., & Landrum, P. F. (1994). The role of the zebra mussel, Dreissena polymorpha, in contaminant cycling: I. The effect of body size and lipid content on the Bioconcentration of PCBs and PAHs. Journal of Great Lakes Research, 20(4), 725–734.CrossRefGoogle Scholar
  17. Burke, M. D., & Mayer, R. T. (1974). Ethoxyresorufin: direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methyl- cholanthrene. Drug Metabolism and Disposition, 2, 583–588.Google Scholar
  18. Cajaraville, M. P., Bebianno, M. J., Blasco, J., Porte, C., Sarasquete, C., & Viarengo, A. (2000). The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian peninsula: a practical approach. Science of the Total Environment, 247, 295–311.CrossRefGoogle Scholar
  19. Châtel, A., Faucet-Marquis, V., Gourlay-France, C., Pfohl-Leszkowicz, A., & Vincent-Hubert, F. (2015). Genotoxicity and activation of cellular defenses in transplanted zebra mussels Dreissena polymorpha along the seine river. Ecotoxicology and Environmental Safety, 114, 241–249.CrossRefGoogle Scholar
  20. Claudi, R., Mackie, G. L. (1994). Chapter 1. Biology of the Zebra Mussel. In Practical manual for Zebra Mussel monitoring and control. Boca Raton: CRC Press.Google Scholar
  21. Contardo-Jara, V., & Wiegand, C. (2008). Molecular biomarkers of Dreissena polymorpha for evaluation of renaturation success of a formerly sewage polluted stream. Environmental Pollution, 155, 182–189.CrossRefGoogle Scholar
  22. Contardo-Jara, V., Krueger, A., Exner, H-J., & Wiegand, C. (2009). Biotransformation and antioxidant enzymes of Dreissena polymorpha for detection of site impact in watercourses of Berlin. Journal of Environmental Monitoring 11(6), 1147–1156.Google Scholar
  23. Dabrowska, H., Kopko, O., Turja, R., Lehtonen, K. K., Góra, A., Polak-Juszczak, L., Warzocha, J., & Kholodkevich, S. (2013). Sediment contaminants and contaminant levels and biomarkers in caged mussels (Mytilus trossulus) in the southern Baltic Sea. Marine Environmental Research, 84, 1–9.CrossRefGoogle Scholar
  24. Damiens, G., Gnassia-Barelli, M., Loquès, F., Roméo, M., & Salbert, V. (2007). Integrated biomarker responses index as a useful tool for environmental assessment evaluated using transplanted mussels. Chemosphere, 66, 574–583.CrossRefGoogle Scholar
  25. Faria, M., Carrasco, L., Diez, S., Riva, M. C., Bayona, J. M., & Barata, C. (2009). Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to polychlorobiphenyls and metals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149(3), 281–288.Google Scholar
  26. Faria, M., Huertas, D., Soto, D. X., Grimalt, J. O., Catalan, J., Riva, M. C., & Barata, C. (2010). Contaminant accumulation and multi-biomarker responses in field collected zebra mussels (Dreissena polymorpha) and crayfish (Procambarus clarkii), to evaluate toxicological effects of industrial hazardous dumps in the Ebro river (NE Spain). Chemosphere, 78, 232–240.CrossRefGoogle Scholar
  27. Faria, M., Ochoa, V., Blázquez, M., Juan, M. F. S., Lazzara, R., Lacorte, S., Soares, A. M. V. M., & Barata, C. (2014). Separating natural from anthropogenic causes of impairment in zebra mussel (Dreissena polymorpha) populations living across a pollution gradient. Aquatic Toxicology, 152, 82–95.CrossRefGoogle Scholar
  28. Galloway, T. S., Millward, N., Browne, M. A., & Depledge, M. H. (2002). Rapid assessment of organophosphorus/carbamate exposure in the bivalve mollusc Mytilus edulis using combined esterase activities as biomarkers. Aquatic Toxicology, 61(3–4), 169–180.CrossRefGoogle Scholar
  29. Geffard, A., Amiard-Triquet, C., & Amiard, J. C. (2005). Do seasonal changes affect metallothionein induction by metals in mussels, Mytilus edulis? Ecotoxicology and Environmental Safety, 61(2), 209–220.CrossRefGoogle Scholar
  30. Gillis, P. L., Higgins, S. K., & Jorge, M. B. (2014). Evidence of oxidative stress in wild freshwater mussels (Lasmigona costata) exposed to urban-derived contaminants. Ecotoxicology and Environmental Safety, 102, 62–69.CrossRefGoogle Scholar
  31. Gossiaux, D. C., Landrum, P. F., & Fisher, S. W. (1996). Effect of temperature on the accumulation kinetics of PAHs and PCBs in the zebra mussel, Dreissena polymorpha. Journal of Great Lakes Research, 22(2), 379–388.CrossRefGoogle Scholar
  32. Grzebyk, D., & Galgani, F. (1991). Measurement of organic pollution in marine organisms. Rapid determination of EROD induction using plate readers. Aquatic Living Resources, 4, 53–59.Google Scholar
  33. Hagger, J. A., Lowe, D., Dissanayake, A., Jones, M. B., & Galloway, T. S. (2010). The influence of seasonality on biomarker responses in Mytilus edulis. Ecotoxicology, 19, 953–962.CrossRefGoogle Scholar
  34. Hlavay, J., & Polyák, K. (2002). Investigation on the pollution sources of bottom sediments in the Lake Balaton. Microchemical Journal, 73(1–2), 65–78.CrossRefGoogle Scholar
  35. Izagirre, U., Garmendia, L., Soto, M., Etxebarria, N., & Marigómez, I. (2014). Health status assessment through an integrative biomarker approach in mussels of different ages with a different history of exposure to the Prestige oil spill. Science of the Total Environment, 493, 65–78.Google Scholar
  36. Kim, W. K., Lee, S. K., & Jung, J. (2010). Integrated assessment of biomarker responses in common carp (Cyprinus carpio) exposed to perfluorinated organic compounds. Journal of Hazardous Materials, 180(1–3), 395–400.CrossRefGoogle Scholar
  37. Kirchin, M. A., Moore, M. N., Dean, R. T., & Winston, G. W. (1992). The role of oxyradicals in intracellular proteolysis and toxicity in mussels. Marine Environmental Research, 34, 315–320.CrossRefGoogle Scholar
  38. Klobučar, G. I. V., Pavlica, M., Erben, R., & Papeš, D. (2003). Application of the micronucleus and comet assays to mussel Dreissena polymorpha haemocytes for genotoxicity monitoring of freshwater environments. Aquatic Toxicology, 64(1), 15–23.CrossRefGoogle Scholar
  39. de Lafontaine, Y., Gagné, F., Blaise, C., Costan, G., Gagnon, P., & Chan, H. M. (2000). Biomarkers in zebra mussels (Dreissena polymorpha) for the assessment and monitoring of water quality of the St. Lawrence River (Canada). Aquatic Toxicology, 50, 51–71.CrossRefGoogle Scholar
  40. Lau, P. S., & Wong, H. L. (2003). Effect of size, tissue parts and location on six biochemical markers in the green-lipped mussel, Perna Viridis. Marine Pollution Bulletin, 46, 1563–1572.CrossRefGoogle Scholar
  41. Leiniö, S., & Lehtonen, K. K. (2005). Seasonal variability in biomarkers in the bivalves Mytilus edulis and Macoma balthica from the northern Baltic Sea. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 140, 408–421.Google Scholar
  42. Lesser, M. P. (2006). Oxidative stress in marine environments: biochemistry and physiological ecology. Annual Review of Physiology, 68, 253–278.CrossRefGoogle Scholar
  43. Livingstone, D. R. (2001). Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, 42, 656–666.Google Scholar
  44. Maranho, L. A., André, C., DelValls, T. A., Gagné, F., & Martín-Díaz, M. L. (2015). In situ evaluation of wastewater discharges and the bioavailability of contaminants to marine biota. Science of the Total Environment, 538, 876–887.Google Scholar
  45. Martín-Díaz, M. L., Gagné, F., & Blaise, C. (2009). The use of biochemical responses to assess ecotoxicological effects of pharmaceutical and personal care products (PPCPs) after injection in the mussel Elliptio complanata. Environmental Toxicology and Pharmacology, 28(2), 237–242.CrossRefGoogle Scholar
  46. Matthews, J., Schipper, A. M., Hendriks, A. J., Le, T. T. Y., bij de Vaate, A., van der Velde, G., & Leuven, R. S. E. W. (2015). A dominance shift from the zebra mussel to the invasive quagga mussel may alter the trophic transfer of metals. Environmental Pollution, 203, 183–190.CrossRefGoogle Scholar
  47. May, B., & Marsden, J. E. (1992). Genetic identification and implications of another invasive species of dreissenid mussel in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 49, 1501–1506.CrossRefGoogle Scholar
  48. McDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.CrossRefGoogle Scholar
  49. Merian, E. (Ed.) (1991). Metals and their compounds in the environment. Weinheim: VCH.Google Scholar
  50. Mills, E. L., Roseman, E. F., Rutzke, M., Gutenmann, W. H., & Lisk, D. J. (1993). Contaminant and nutrient element levels in soft-tissues of zebra and quagga mussels from waters of southern Lake Ontario. Chemosphere, 27, 1465–1473.CrossRefGoogle Scholar
  51. Mills, E. L., Rosenberg, G., Spidle, A. P., Ludyanskiy, M., Pligin, M., & May, B. (1996). A review of the biology and ecology of the quagga mussel (Dreissena bugensis), a second species of freshwater dreissenid introduced to North America. American Zoologist, 36, 271–286.CrossRefGoogle Scholar
  52. Minier, C., Abarnou, A., Jaouen-Madoulet, A., Le Guellec, A. M., Tutundjian, R., Bocquené, D., & Leboulenger, F. (2006). A pollution-monitoring pilot study involving contaminant and biomarker measurements in the seine estuary, France, using zebra mussels (Dreissena polymorpha). Environmental Toxicology, 25(1), 112–119.CrossRefGoogle Scholar
  53. Nahrgang, J., Brooks, S. J., Evenset, A., Camus, L., Jonsson, M., Smith, T. J., Lukina, J., Frantzen, M., Giarratano, E., & Renaud, P. E. (2013). Seasonal variation in biomarkersin blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlanticcod (Gadus morhua)—implications for environmental monitoring in the Barents Sea. Aquatic Toxicology, 127, 21–35.CrossRefGoogle Scholar
  54. Narbonne, J. F., Aarab, N., Clėrandeau, C., Daubėze, M., Narbonne, J., Champeau, O., & Garrigues, P. (2005). Scale of classification based on biochemical markers in mussels: application to pollution monitoring in Mediterranean coasts and temporal trends. Biomarkers, 10(1), 58–71.CrossRefGoogle Scholar
  55. Nguyen, H. L., Leermakers, M., Osán, J., Török, S., & Baeyens, W. (2005). Heavy metals in Lake Balaton: water column, suspended matter, sediment and biota. Science of the Total Environment, 340(1–3), 213–230.CrossRefGoogle Scholar
  56. O’Neill, A. J., Galloway, T. S., Browne, M. A., Dissanayke, A., & Depledge, M. H. (2004). Evaluation of toxicity in tributaries of the Mersey estuary using the isopod Asellus aquaticus (L.). Marine Environmental Research, 58(2–5), 327–331.CrossRefGoogle Scholar
  57. Ochoa, V., Riva, C., Faria, M., de Alda, M. L., Barceló, D., Tejedor, M. F., Roque, A., & Barata, C. (2012). Are pesticide residues associated to rice production affecting oyster production in Delta del Ebro, NE Spain? Science of the Total Environment, 437, 209–218.CrossRefGoogle Scholar
  58. Olive, P. L. (1988). DNA precipitation assay: a rapid and simple method for detecting DNA damage in mammalian cells. Environmental and Molecular Mutagenesis, 11, 487–495.CrossRefGoogle Scholar
  59. Oliveira, M., Maria, V. L., Ahmad, I., Serafim, A., Bebianno, M. J., Pacheco, M., & Santos, M. A. (2009). Contamination assessment of a coastal lagoon (Ria de Aveiro, Portugal) using defence and damage biochemical indicators in gill of Liza aurata—an integrated biomarker approach. Environmental Pollution, 157, 959–967.CrossRefGoogle Scholar
  60. van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13(2), 57–149.CrossRefGoogle Scholar
  61. Palais, F., Dedourge-Geffard, O., Beaudon, A., Pain-Devin, S., Trapp, J., Geffard, O., Noury, P., Gourlay-Francé, C., Uher, E., Mouneyrac, C., Biagianti-Risbourg, S., & Geffard, A. (2012). One-year monitoring of core biomarker and digestive enzyme responses in transplanted zebra mussels (Dreissena polymorpha). Ecotoxicology, 21, 888–905.CrossRefGoogle Scholar
  62. Parolini, M., Pedriali, A., & Binelli, A. (2013). Chemical and biomarker responses forsite-specific quality assessment of the Lake Maggiore (northern Italy). Environmental Science and Pollution Research, 20, 5545–5557.CrossRefGoogle Scholar
  63. Pipe, R. K. (1987). Oogenesis in the marine mussel Mytilus edulis: an ultrastructural study. Marine Biology, 95, 405–414.CrossRefGoogle Scholar
  64. Raftopoulou, E. K., & Dimitriadis, V. K. (2010). Assessment of the health status of mussels Mytilus galloprovincialis along Thermaikos gulf (northern Greece): an integrative biomarker approach using ecosystem health indices. Ecotoxicology and Environmental Safety, 73(7), 1580–1587.CrossRefGoogle Scholar
  65. Rank, J., Lehtonen, K. K., Strand, J., & Laursen, M. (2007). DNA damage, acetyl-cholinesterase activity and lysosomal stability in native and transplanted mussels (Mytilus edulis) in areas close to coastal chemical dumping sites in Denmark. Aquatic Toxicology, 84, 50–61.CrossRefGoogle Scholar
  66. Raspor, B., Dragun, Z., Erk, M., Ivanković, D., & Pavicić, J. (2004). Is the digestive gland of Mytilus galloprovincialis a tissue of choice for estimating cadmium exposure by means of metallothioneins? Science of the Total Environment, 333(1–3), 99–108.CrossRefGoogle Scholar
  67. Richman, L., & Somers, K. (2005). Can we use zebra and quagga mussels for biomonitoring contaminants in the Niagara River? Water, Air, and Soil Pollution, 167, 155–178.CrossRefGoogle Scholar
  68. Rutzke, M. A., Gutenmann, W. H., Lisk, D. J., & Mills, E. L. (2000). Toxic and nutrient element concentrations in soft tissues of zebra and quagga mussels from lakes Erie and Ontario. Chemosphere, 40, 1353–1356.CrossRefGoogle Scholar
  69. Sapone, A., Canistro, D., Vivarelli, F., & Paolini, M. (2016). Perturbation of xenobiotic metabolism in Dreissena polymorpha model exposed in situ to surface water (Lake Trasimene) purified with various disinfectants. Chemosphere, 144, 548–554.CrossRefGoogle Scholar
  70. Sato, M., & Bremner, I. (1993). Oxygen free radicals and metallothionein. Free Radical Biology & Medicine, 14, 325–337.CrossRefGoogle Scholar
  71. Shaw, J. P., Large, A. T., Donkin, P., Evans, S. V., Staff, F. J., Livingstone, D. R., Chipman, J. K., & Peters, L. D. (2004). Seasonal variation in cytochrome P450 immunopositive protein levels, lipid peroxidation and genetic toxicity in digestive gland of the mussel Mytilus edulis. Aquatic Toxicology, 67(4), 325–336.CrossRefGoogle Scholar
  72. Sheehan, D., & Power, A. (1999). Effects of seasonality on xenobiotic and antioxidantdefence mechanisms of bivalve molluscs. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 123, 193–199.CrossRefGoogle Scholar
  73. Suzuki, T., Hara, A., Yamaguchi, K., & Mori, K. (1992). Purification and immunolocalization of a vitellin-like protein from the Pacific oyster Crassostrea gigas. Marine Biology, 113, 239–245.Google Scholar
  74. Szabó, G., Khayer, B., Rusznyák, A., Tátrai, I., Dévai, G., Márialigeti, K., & Borsodi, A. K. (2011). Seasonal and spatial variability of sediment bacterial communities inhabiting the large shallow Lake Balaton. Hydrobiologia, 663, 217–232.CrossRefGoogle Scholar
  75. Tátrai, I., Istvánovics, V., G-Tóth, L., & Kóbor, I. (2008). Management measures and long-term water quality changes in Lake Balaton, Hungary. Fundamental and Applied Lomnology, 172, 1–11.CrossRefGoogle Scholar
  76. Viarengo, A., & Nott, J. A. (1993). Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 104, 355–372.CrossRefGoogle Scholar
  77. Viarengo, A., Burlando, B., Cavaletto, M., Marchi, B., Ponzano, E., & Blasco, J. (1999). Role of metallothionein against oxidative stress in the mussel (Mytilus galloprovincialis). American Journal of Physiology, 277, 1612–1619.Google Scholar
  78. Viarengo, A., Canesi, L., Pertica, M., & Livingstone, D. R. (1991). Seasonal variations in the antioxidant defence systems and lipid peroxidation of the digestive gland of mussels. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 100(1–2), 187–190.CrossRefGoogle Scholar
  79. Viarengo, A., Lowe, D., Bolognesi, C., Fabbri, E., & Koehler, A. (2007). The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146, 281–300.Google Scholar
  80. Viarengo, A., Ponzano, E., Dondero, F., & Fabbri, E. (1997). A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Marine Environmental Research, 44(1), 69–84.CrossRefGoogle Scholar
  81. Voets, J., Talloen, W., de Tender, T., van Dongen, S., Covaci, A., Blust, R., & Bervoets, L. (2006). Microcontaminant accumulation, physiological condition and bilateral asymmetry in zebra mussels (Dreissena polymorpha) from clean and contaminated surface waters. Aquatic Toxicology, 79(3), 213–225.CrossRefGoogle Scholar
  82. Wills, E. D. (1987). Evaluation of lipid peroxidation in lipids and biological membranes. In K. Snell & B. Mullock (Eds.), Biochemical Toxicology: A Practical Approach (pp. 127–150). Washington: IRL Press.Google Scholar
  83. Zorita, I., Ortiz-Zarragoitia, M., Orbea, A., Soto, M., Marigómez, I., & Cajaraville, M. P. (2008). Application of an integrated biomarker response index (IBR) to assess the health status of mussels in the Basque coast (NE Iberian peninsula). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151(1), S29.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.MTA ÖK Centre for Ecological Research, Balaton Limnological InstituteTihanyHungary

Personalised recommendations