Advertisement

Autochthonous microbial community associated with pine needle forest litterfall influences its degradation under natural environmental conditions

  • Rishi Mahajan
  • Anna Nikitina
  • Yury Litti
  • Alla Nozhevnikova
  • Gunjan Goel
Article

Abstract

The slow natural degradation of chir pine (Pinus roxburghii) needle litterfall and its accumulation on forest floors have been attributed to its lignocellulosic complexities of the biomass. The present study offers a microbiological insight into the role of autochthonous microflora associated with pine needle litterfall in its natural degradation. The denaturing gradient gel electrophoresis (DGGE) fingerprinting indicated actinomycetes (Saccharomonospora sp., Glycomyces sp., Agrococcus sp., Leifsonia sp., Blastocatella sp., and Microbacterium sp.) as a dominant microbial community associated with pine needle litterfall with the absence of fungal decomposers. On exclusion of associated autochthonous microflora from pine litterfall resulted in colonization by decomposer fungi identified as Penicillium chrysogenum and Aspergillus sp., which otherwise failed to colonize the litterfall under natural conditions. The results, therefore, indicated that the autochthonous microbial community of pine needle litterfall (dominated by actinomycetes) obstructs the colonization of litter-degrading fungi and subsequently hinders the overall process of natural degradation of litterfall.

Keywords

Pine needle litterfall Autochthonous microbial community Actinomycetes 

Notes

Acknowledgments

The research is funded by the Department of Science and Technology, Government of India, for Indo-Russian collaborative project “Elucidating the linkage between key limiting processes and microorganisms during anaerobic degradation of lignocellulosic waste” INT/RUS/RFBR/P-175.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.CrossRefGoogle Scholar
  2. Arslan, H., Güleryüz, G., & Kırmızı, S. (2010). Nitrogen mineralisation in the soil of indigenous oak and pine plantation forests in a Mediterranean environment. European Journal of Soil Biology, 46(1), 11–17.CrossRefGoogle Scholar
  3. Berg, B., Erhagen, B., Johansson, M. B., Nilsson, M., Stendahl, J., Trum, F., & Vesterdal, L. (2015). Manganese in the litter fall-forest floor continuum of boreal and temperate pine and spruce forest ecosystems: a review. Forest Ecology and Management, 358, 248–260.CrossRefGoogle Scholar
  4. Bisht, A. S., Singh, S., & Kumar, M. (2014). Pine needles a source of energy for Himalayan Region. International Journal of Scientific & Technology Research, 3(12), 161–164.Google Scholar
  5. Bray, S. R., Kitajima, K., & Mack, M. C. (2012). Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biology and Biochemistry, 49, 30–37.CrossRefGoogle Scholar
  6. Cornwell, W. K., Cornelissen, J. H., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10), 1065–1071.CrossRefGoogle Scholar
  7. Dângelo, R. A. C., de Souza, D. J., Mendes, T. D., Couceiro, J. D. C., & Lucia, T. M. C. D. (2016). Actinomycetes inhibit filamentous fungi from the cuticle of Acromyrmex leafcutter ants. Journal of Basic Microbiology, 56(3), 229–237.CrossRefGoogle Scholar
  8. Das, M., Royer, T. V., & Leff, L. G. (2007). Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Applied and Environmental Microbiology, 73(3), 756–767.CrossRefGoogle Scholar
  9. De Groot, R. C. (1971). Interactions between wood decay fungi and Streptomyces species. Bulletin of the Torrey Botanical Club, 98, 336–346.CrossRefGoogle Scholar
  10. Dempster, E. L., Pryor, K. V., Francis, D., Young, J. E., & Rogers, H. J. (1999). Rapid DNA extraction from ferns for PCR-based analyses. Biotechniques, 27(1), 66.Google Scholar
  11. Ding, S. Y., Liu, Y. S., Zeng, Y., Himmel, M. E., Baker, J. O., & Bayer, E. A. (2012). How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science, 338(6110), 1055–1060.CrossRefGoogle Scholar
  12. Ferris, S. W. (1963). Technical Association of the Pulp and Paper Industry. Special Technical Association Publication, New York, USA, STAP, (2), 1.Google Scholar
  13. Getha, K., & Vikineswary, S. (2002). Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f. sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process. Journal of Industrial Microbiology and Biotechnology, 28(6), 303–310.CrossRefGoogle Scholar
  14. Isidorov, V., Tyszkiewicz, Z., & Pirożnikow, E. (2016). Fungal succession in relation to volatile organic compounds emissions from Scots pine and Norway spruce leaf litter-decomposing fungi. Atmospheric Environment, 131, 301–306.CrossRefGoogle Scholar
  15. Jayasinghe, B. D., & Parkinson, D. (2008). Actinomycetes as antagonists of litter decomposer fungi. Applied Soil Ecology, 38(2), 109–118.CrossRefGoogle Scholar
  16. Kimura, F., Sato, M., & Kato-Noguchi, H. (2015). Allelopathy of pine litter: delivery of allelopathic substances into forest floor. Journal of Plant Biology, 58(1), 61–67.CrossRefGoogle Scholar
  17. Klotzbucher, T., Kaiser, K., Guggenberger, G., Gatzek, C., & Kalbitz, K. (2011). A new conceptual model for the fate of lignin in decomposing plant litter. Ecology, 92(5), 1052–1062.CrossRefGoogle Scholar
  18. Lane, D. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.) Nucleic acid techniques in bacterial systematics (pp. 115–175). UK: WileyGoogle Scholar
  19. Loqman, S., Barka, E. A., Clément, C., & Ouhdouch, Y. (2009). Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World Journal of Microbiology and Biotechnology, 25(1), 81–91.CrossRefGoogle Scholar
  20. Lyautey, E., Jackson, C. R., Cayrou, J., Rols, J. L., & Garabétian, F. (2005). Bacterial community succession in natural river biofilm assemblages. Microbial Ecology, 50(4), 589–601.CrossRefGoogle Scholar
  21. Mahajan, R., Nikitina, A., Nozhevnikova, A., & Goel, G. (2016). Microbial diversity in an anaerobic digester with biogeographical proximity to geothermally active region. Environmental Technology. doi: 10.1080/09593330.2016.1159733.Google Scholar
  22. Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., et al. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26(5), 553–560.CrossRefGoogle Scholar
  23. Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695–700.Google Scholar
  24. Navarro‐Cano, J. A., Barberá, G. G., & Castillo, V. M. (2010). Pine litter from afforestations hinders the establishment of endemic plants in semiarid scrubby habitats of Natura 2000 Network. Restoration Ecology, 18(2), 165–169.CrossRefGoogle Scholar
  25. Newman, M. M., Liles, M. R., & Feminella, J. W. (2015). Litter breakdown and microbial succession on two submerged leaf species in a small forested stream. PLoS One, 10(6), e0130801.CrossRefGoogle Scholar
  26. Persson, T., Bååth, E., Clarholm, M., Lundkvist, H., Söderström, B. E., & Sohlenius, B. (1980). Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest. Ecological Bulletins, 32, 419–459.Google Scholar
  27. Purahong, W., Kapturska, D., Pecyna, M. J., Schulz, E., Schloter, M., Buscot, F., et al. (2014). Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from Central European forests. PLoS One, 9(4), e93700.CrossRefGoogle Scholar
  28. Purahong, W., Kapturska, D., Pecyna, M. J., Jariyavidyanont, K., Kaunzner, J., Juncheed, K., et al. (2015). Effects of forest management practices in temperate beech forests on bacterial and fungal communities involved in leaf litter degradation. Microbial Ecology, 69(4), 905–913.CrossRefGoogle Scholar
  29. Rawat, G., Wikramanayake, E.D., & Yonzon, P. (2001). Himalayan subtropical pine forests (IM0301); WWF Report.Google Scholar
  30. Safi, M. J., Mishra, I. M., & Prasad, B. (2004). Global degradation kinetics of pine needles in air. Thermochimica Acta, 412(1), 155–162.CrossRefGoogle Scholar
  31. Sharma, D. P. (2009). Biomass distribution in sub-tropical forests of Solan Forest Division (HP). Indian Journal of Ecology, 36(1), 1–5.Google Scholar
  32. Sharma, D. P., & Singh, M. (2010). Assessing the carbon sequestration potential of subtropical pine forest in north-western Himalayas—a GIS approach. Journal of the Indian Society of Remote Sensing, 38(2), 247–253.CrossRefGoogle Scholar
  33. Sharma, D., Goel, G., Bansal, S., Mahajan, R., Sharma, B. M., & Chauhan, R. S. (2015). Characterization of cellulolytic activities of newly isolated Thelephora sowerbyi from North-Western Himalayas on different lignocellulosic substrates. Journal of Basic Microbiology. doi: 10.1002/jobm.201500107.Google Scholar
  34. Sheffer, E., Canham, C. D., Kigel, J., & Perevolotsky, A. (2015). Countervailing effects on pine and oak leaf litter decomposition in human-altered Mediterranean ecosystems. Oecologia, 177(4), 1039–1051.CrossRefGoogle Scholar
  35. Singh, A., & Kushwaha, S. P. S. (2011). Refining logistic regression models for wildlife habitat suitability modeling—a case study with muntjak and goral in the Central Himalayas, India. Ecological Modelling, 222(8), 1354–1366.CrossRefGoogle Scholar
  36. Soong, J. L., Parton, W. J., Calderon, F., Campbell, E. E., & Cotrufo, M. F. (2015). A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry, 124(1-3), 27–44.CrossRefGoogle Scholar
  37. Tiwari, A., Rawat, S., & Adhikari, R. S. (2016). Decomposition pattern in Pinus longifolia leaf litter in Chandak Forest in the presence of cow dung and urea. International Journal of Current Microbiology and Applied Sciences, 5(2), 806–812.CrossRefGoogle Scholar
  38. Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296–310.CrossRefGoogle Scholar
  39. Vestgarden, L. S., Nilsen, P., & Abrahamsen, G. (2004). Nitrogen cycling in Pinus sylvestris stands exposed to different nitrogen inputs. Scandinavian Journal of Forest Research, 19(1), 38–47.CrossRefGoogle Scholar
  40. Waing, K. G. D., Gutierrez, J. M., Galvez, C. T., & Undan, J. R. (2015). Molecular identification of leaf litter fungi potential for cellulose degradation. Mycosphere, 6(2), 139–144.Google Scholar
  41. Weedon, J. T., Cornwell, W. K., Cornelissen, J. H., Zanne, A. E., Wirth, C., & Coomes, D. A. (2009). Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecology Letters, 12(1), 45–56.CrossRefGoogle Scholar
  42. White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–322). New York: Academic.Google Scholar
  43. Zhou, Y., Clark, M., Su, J., & Xiao, C. (2015). Litter decomposition and soil microbial community composition in three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant and Soil, 386(1-2), 171–183.CrossRefGoogle Scholar
  44. Zvyagintsev, D. G., Bab’eva, I. P., Zenova, G. M., & Polyanskaya, L. M. (1996). Diversity of fungi and actinomycetes and their ecological functions. Eurasian Soil Science, 29(6), 635–642.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rishi Mahajan
    • 1
  • Anna Nikitina
    • 2
  • Yury Litti
    • 2
  • Alla Nozhevnikova
    • 2
  • Gunjan Goel
    • 1
  1. 1.Department of Biotechnology and BioinformaticsJaypee University of Information TechnologyWaknaghatIndia
  2. 2.Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia

Personalised recommendations