Skip to main content

Advertisement

Log in

Autochthonous microbial community associated with pine needle forest litterfall influences its degradation under natural environmental conditions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The slow natural degradation of chir pine (Pinus roxburghii) needle litterfall and its accumulation on forest floors have been attributed to its lignocellulosic complexities of the biomass. The present study offers a microbiological insight into the role of autochthonous microflora associated with pine needle litterfall in its natural degradation. The denaturing gradient gel electrophoresis (DGGE) fingerprinting indicated actinomycetes (Saccharomonospora sp., Glycomyces sp., Agrococcus sp., Leifsonia sp., Blastocatella sp., and Microbacterium sp.) as a dominant microbial community associated with pine needle litterfall with the absence of fungal decomposers. On exclusion of associated autochthonous microflora from pine litterfall resulted in colonization by decomposer fungi identified as Penicillium chrysogenum and Aspergillus sp., which otherwise failed to colonize the litterfall under natural conditions. The results, therefore, indicated that the autochthonous microbial community of pine needle litterfall (dominated by actinomycetes) obstructs the colonization of litter-degrading fungi and subsequently hinders the overall process of natural degradation of litterfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    Article  CAS  Google Scholar 

  • Arslan, H., Güleryüz, G., & Kırmızı, S. (2010). Nitrogen mineralisation in the soil of indigenous oak and pine plantation forests in a Mediterranean environment. European Journal of Soil Biology, 46(1), 11–17.

    Article  CAS  Google Scholar 

  • Berg, B., Erhagen, B., Johansson, M. B., Nilsson, M., Stendahl, J., Trum, F., & Vesterdal, L. (2015). Manganese in the litter fall-forest floor continuum of boreal and temperate pine and spruce forest ecosystems: a review. Forest Ecology and Management, 358, 248–260.

    Article  Google Scholar 

  • Bisht, A. S., Singh, S., & Kumar, M. (2014). Pine needles a source of energy for Himalayan Region. International Journal of Scientific & Technology Research, 3(12), 161–164.

    Google Scholar 

  • Bray, S. R., Kitajima, K., & Mack, M. C. (2012). Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biology and Biochemistry, 49, 30–37.

    Article  CAS  Google Scholar 

  • Cornwell, W. K., Cornelissen, J. H., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10), 1065–1071.

    Article  Google Scholar 

  • Dângelo, R. A. C., de Souza, D. J., Mendes, T. D., Couceiro, J. D. C., & Lucia, T. M. C. D. (2016). Actinomycetes inhibit filamentous fungi from the cuticle of Acromyrmex leafcutter ants. Journal of Basic Microbiology, 56(3), 229–237.

    Article  Google Scholar 

  • Das, M., Royer, T. V., & Leff, L. G. (2007). Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Applied and Environmental Microbiology, 73(3), 756–767.

    Article  CAS  Google Scholar 

  • De Groot, R. C. (1971). Interactions between wood decay fungi and Streptomyces species. Bulletin of the Torrey Botanical Club, 98, 336–346.

    Article  Google Scholar 

  • Dempster, E. L., Pryor, K. V., Francis, D., Young, J. E., & Rogers, H. J. (1999). Rapid DNA extraction from ferns for PCR-based analyses. Biotechniques, 27(1), 66.

    CAS  Google Scholar 

  • Ding, S. Y., Liu, Y. S., Zeng, Y., Himmel, M. E., Baker, J. O., & Bayer, E. A. (2012). How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science, 338(6110), 1055–1060.

    Article  CAS  Google Scholar 

  • Ferris, S. W. (1963). Technical Association of the Pulp and Paper Industry. Special Technical Association Publication, New York, USA, STAP, (2), 1.

  • Getha, K., & Vikineswary, S. (2002). Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f. sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process. Journal of Industrial Microbiology and Biotechnology, 28(6), 303–310.

    Article  CAS  Google Scholar 

  • Isidorov, V., Tyszkiewicz, Z., & Pirożnikow, E. (2016). Fungal succession in relation to volatile organic compounds emissions from Scots pine and Norway spruce leaf litter-decomposing fungi. Atmospheric Environment, 131, 301–306.

    Article  CAS  Google Scholar 

  • Jayasinghe, B. D., & Parkinson, D. (2008). Actinomycetes as antagonists of litter decomposer fungi. Applied Soil Ecology, 38(2), 109–118.

    Article  Google Scholar 

  • Kimura, F., Sato, M., & Kato-Noguchi, H. (2015). Allelopathy of pine litter: delivery of allelopathic substances into forest floor. Journal of Plant Biology, 58(1), 61–67.

    Article  CAS  Google Scholar 

  • Klotzbucher, T., Kaiser, K., Guggenberger, G., Gatzek, C., & Kalbitz, K. (2011). A new conceptual model for the fate of lignin in decomposing plant litter. Ecology, 92(5), 1052–1062.

    Article  Google Scholar 

  • Lane, D. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.) Nucleic acid techniques in bacterial systematics (pp. 115–175). UK: Wiley

  • Loqman, S., Barka, E. A., Clément, C., & Ouhdouch, Y. (2009). Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World Journal of Microbiology and Biotechnology, 25(1), 81–91.

    Article  Google Scholar 

  • Lyautey, E., Jackson, C. R., Cayrou, J., Rols, J. L., & Garabétian, F. (2005). Bacterial community succession in natural river biofilm assemblages. Microbial Ecology, 50(4), 589–601.

    Article  Google Scholar 

  • Mahajan, R., Nikitina, A., Nozhevnikova, A., & Goel, G. (2016). Microbial diversity in an anaerobic digester with biogeographical proximity to geothermally active region. Environmental Technology. doi:10.1080/09593330.2016.1159733.

    Google Scholar 

  • Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., et al. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26(5), 553–560.

    Article  CAS  Google Scholar 

  • Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695–700.

    CAS  Google Scholar 

  • Navarro‐Cano, J. A., Barberá, G. G., & Castillo, V. M. (2010). Pine litter from afforestations hinders the establishment of endemic plants in semiarid scrubby habitats of Natura 2000 Network. Restoration Ecology, 18(2), 165–169.

    Article  Google Scholar 

  • Newman, M. M., Liles, M. R., & Feminella, J. W. (2015). Litter breakdown and microbial succession on two submerged leaf species in a small forested stream. PLoS One, 10(6), e0130801.

    Article  Google Scholar 

  • Persson, T., Bååth, E., Clarholm, M., Lundkvist, H., Söderström, B. E., & Sohlenius, B. (1980). Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest. Ecological Bulletins, 32, 419–459.

    CAS  Google Scholar 

  • Purahong, W., Kapturska, D., Pecyna, M. J., Schulz, E., Schloter, M., Buscot, F., et al. (2014). Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from Central European forests. PLoS One, 9(4), e93700.

    Article  Google Scholar 

  • Purahong, W., Kapturska, D., Pecyna, M. J., Jariyavidyanont, K., Kaunzner, J., Juncheed, K., et al. (2015). Effects of forest management practices in temperate beech forests on bacterial and fungal communities involved in leaf litter degradation. Microbial Ecology, 69(4), 905–913.

    Article  Google Scholar 

  • Rawat, G., Wikramanayake, E.D., & Yonzon, P. (2001). Himalayan subtropical pine forests (IM0301); WWF Report.

  • Safi, M. J., Mishra, I. M., & Prasad, B. (2004). Global degradation kinetics of pine needles in air. Thermochimica Acta, 412(1), 155–162.

    Article  CAS  Google Scholar 

  • Sharma, D. P. (2009). Biomass distribution in sub-tropical forests of Solan Forest Division (HP). Indian Journal of Ecology, 36(1), 1–5.

    Google Scholar 

  • Sharma, D. P., & Singh, M. (2010). Assessing the carbon sequestration potential of subtropical pine forest in north-western Himalayas—a GIS approach. Journal of the Indian Society of Remote Sensing, 38(2), 247–253.

    Article  Google Scholar 

  • Sharma, D., Goel, G., Bansal, S., Mahajan, R., Sharma, B. M., & Chauhan, R. S. (2015). Characterization of cellulolytic activities of newly isolated Thelephora sowerbyi from North-Western Himalayas on different lignocellulosic substrates. Journal of Basic Microbiology. doi:10.1002/jobm.201500107.

    Google Scholar 

  • Sheffer, E., Canham, C. D., Kigel, J., & Perevolotsky, A. (2015). Countervailing effects on pine and oak leaf litter decomposition in human-altered Mediterranean ecosystems. Oecologia, 177(4), 1039–1051.

    Article  Google Scholar 

  • Singh, A., & Kushwaha, S. P. S. (2011). Refining logistic regression models for wildlife habitat suitability modeling—a case study with muntjak and goral in the Central Himalayas, India. Ecological Modelling, 222(8), 1354–1366.

    Article  Google Scholar 

  • Soong, J. L., Parton, W. J., Calderon, F., Campbell, E. E., & Cotrufo, M. F. (2015). A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry, 124(1-3), 27–44.

    Article  CAS  Google Scholar 

  • Tiwari, A., Rawat, S., & Adhikari, R. S. (2016). Decomposition pattern in Pinus longifolia leaf litter in Chandak Forest in the presence of cow dung and urea. International Journal of Current Microbiology and Applied Sciences, 5(2), 806–812.

    Article  Google Scholar 

  • Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296–310.

    Article  Google Scholar 

  • Vestgarden, L. S., Nilsen, P., & Abrahamsen, G. (2004). Nitrogen cycling in Pinus sylvestris stands exposed to different nitrogen inputs. Scandinavian Journal of Forest Research, 19(1), 38–47.

    Article  Google Scholar 

  • Waing, K. G. D., Gutierrez, J. M., Galvez, C. T., & Undan, J. R. (2015). Molecular identification of leaf litter fungi potential for cellulose degradation. Mycosphere, 6(2), 139–144.

    Google Scholar 

  • Weedon, J. T., Cornwell, W. K., Cornelissen, J. H., Zanne, A. E., Wirth, C., & Coomes, D. A. (2009). Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecology Letters, 12(1), 45–56.

    Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–322). New York: Academic.

    Google Scholar 

  • Zhou, Y., Clark, M., Su, J., & Xiao, C. (2015). Litter decomposition and soil microbial community composition in three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant and Soil, 386(1-2), 171–183.

    Article  CAS  Google Scholar 

  • Zvyagintsev, D. G., Bab’eva, I. P., Zenova, G. M., & Polyanskaya, L. M. (1996). Diversity of fungi and actinomycetes and their ecological functions. Eurasian Soil Science, 29(6), 635–642.

    Google Scholar 

Download references

Acknowledgments

The research is funded by the Department of Science and Technology, Government of India, for Indo-Russian collaborative project “Elucidating the linkage between key limiting processes and microorganisms during anaerobic degradation of lignocellulosic waste” INT/RUS/RFBR/P-175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunjan Goel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, R., Nikitina, A., Litti, Y. et al. Autochthonous microbial community associated with pine needle forest litterfall influences its degradation under natural environmental conditions. Environ Monit Assess 188, 417 (2016). https://doi.org/10.1007/s10661-016-5421-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5421-1

Keywords

Navigation