Assessing ambient ozone injury in olive (Olea europaea L.) plants by using the antioxidant ethylenediurea (EDU) in Saudi Arabia

  • J. M. Basahi
  • I. M. Ismail
  • N. S. Haiba
  • I. A. Hassan
  • G. Lorenzini


The antiozonant chemical, ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N′-phenylurea, abbreviated as EDU), was applied as stem injections or soil drenches to 5-year-old containerized plants of olive (Olea europaea L. cultivar Kalamata) in growth chambers in order to assess its ameliorative effects against realistic ozone (O3) stress. Visible injury symptoms were reduced greatly in individuals treated with EDU, with injection applications having greater protection than soil drenches. EDU application caused increases in the measured ecophysiological parameters compared to untreated individuals. In particular, the stem injection protected plants against photosynthetic impairment (unchanged net photosynthetic rates and intercellular CO2 concentration, in comparison to plants grown in filtered air). EDU application increased the protection of PSII from ambient O3 oxidative stress, although it did not retain the proportion of redox state of QA, pigment composition of photosynthetic apparatus and size of light-harvesting complex of PSII. However, the stem injection of plants with EDU induced lower non-photochemical quenching (NPQ) values in comparison to ambient air (−2 %), indicating a better photoprotection of PSII in comparison to soil drench application. EDU application caused increases in the morphological and biometric parameters compared to individuals exposed to ambient air. To the best of our knowledge, this is the first study highlighting the protection of Kalamata olive trees due to EDU in terms of growth, yield, visible injury, and photosynthetic performance. Furthermore, this study proved that EDU could be a low-cost and a low-technology efficient tool for assessing O3 effects on plant performances in the field in Saudi Arabia.


O3 Stem injection Soil drench Photosynthesis Growth and yield 



We would like to thank Prof. Jeremy D. Barnes (Dept. Agricultural and Environmental Science, Newcastle University, Newcastle upon Tyne, UK) for a generous supply of EDU. Thanks are also due to Elisa Pellegrini and Lorenzo Cotrozzi, University of Pisa, for their helpful contribution to discussion.


  1. Abusafieh, D., Pilakoni, E. D., & Nanos, G. D. (2011). O3 and salinity combined stress effects on olive leaf antioxidant enzyme activities. Acta Horticulturae, 888, 127–134.CrossRefGoogle Scholar
  2. Agrawal, S. B., Singh, A., & Rathore, D. (2005). Role of EDU in assessing impact of O3 on Vinga radiata plants in suburban area of Allahabad (India). Chemosphere, 61, 218–228.CrossRefGoogle Scholar
  3. Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D. (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63, 637–661.CrossRefGoogle Scholar
  4. Alghamdi, M. A., Khoder, M., Harrison, R. M., Hyvärinen, A.-P., Hussein, T., Al-Jeelani, H., Abdelmaksoud, A. S., Goknil, M. H., Shabbaj, I. I., Almehmadi, F. M., Lihavainen, H., & Kulmala, M. (2014). Temporal variations of O3 and NOx in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Atmospheric Environment, 94, 205–214.CrossRefGoogle Scholar
  5. Ali, A., Alfarhan, A., Robinson, E., Bokhari, N., Al-Rasheid, K., & Al-Quraishy, S. (2008). Tropospheric ozone effects on the productivity of some crops in central Saudi Arabia. American Journal of Environmental Sciences, 4, 631–637.CrossRefGoogle Scholar
  6. Avnery, S., Mauzerall, D. L., Liu, J., & Horowitz, L. W. (2011). Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmospheric Environment, 45, 2297–2309.CrossRefGoogle Scholar
  7. Bortier, K., Dekelver, G., De Temmerman, L., & Ceulemans, R. (2001). Stem injection of Populus nigra with EDU to study ozone effects under field conditions. Environmental Pollution, 111, 199–208.CrossRefGoogle Scholar
  8. Bussotti, F., & Gerosa, G. (2002). Are the Mediterranean forests in Southern Europe threatened from ozone? Journal of Mediterranean Ecology, 3, 23–34.Google Scholar
  9. Carnahan, J. E., Jenner, E. L., & Wat, E. K. (1978). Prevention of ozone injury to plants by a new chemical protectant. Phytopathology, 68, 1225–1229.CrossRefGoogle Scholar
  10. Coyle, M., Fowler, D., & Ashmore, M. (2003). New directions. Implications of increasing tropospheric background ozone concentrations for vegetation. Atmospheric Environment, 37, 153–154.CrossRefGoogle Scholar
  11. Davison, A. W., & Barnes, J. (1998). Effects of O3 on wild plants. New Phytologist, 139, 135–151.CrossRefGoogle Scholar
  12. Eliwa, A. M., & Kamel, E. A.-R. (2013). Olive plants (Olea europaea L.) as a bioindicator for pollution. Pakistan Journal of Biological Sciences, 16, 551–557.CrossRefGoogle Scholar
  13. Feng, Z., Wang, S., Szantoi, Z., Chen, S., & Wang, X. (2010). Protection of plants from ambient O3 by application of EDU: a meta-analytic review. Environmental Pollution, 158, 3236–3243.CrossRefGoogle Scholar
  14. Fiscus, E. L., Booker, F. L., & Burkey, K. O. (2005). Crop response to ozone: uptake, modes of action, carbon assimilation and portioning. Plant, Cell and Environment, 28, 997–1011.CrossRefGoogle Scholar
  15. Hassan, I. A. (2004). Interactive effects of salinity and ozone pollution on photosynthesis, stomatal conductance, growth, and assimilate partitioning of wheat (Triticum aestivum L.). Photosynthetica, 42, 111–116.CrossRefGoogle Scholar
  16. Hassan, I. A. (2006). Physiological and biochemical response of potato (Solanum tuberosum L. cv. Kara) to O3 and antioxidant chemicals: possible roles of antioxidant enzymes. Annals of Applied Biology, 146, 134–142.Google Scholar
  17. Hassan, I. A., Ashmore, M. R., & Bell, J. N. B. (1995). Response of radish and turnip to O3 under Egyptian field conditions. Environmental Pollution, 88, 95–99.Google Scholar
  18. Hassan, I. A., Basahi, J. M., Ismail, I., & Habbebullah, T. (2013). Spatial distribution and temporal variation in ambient ozone and its associated NOx in the atmosphere of Jeddah City, Saudi Arabia. Aerosol and Air Quality, 13, 1712–1722.Google Scholar
  19. Hassan, I. A., Abou Zeid, H., Taia, W., Badr, R., El Dakak, R., Zahran, A., & Shalaby, E. (2015). Fertilization regimes under hot conditions alter photosynthetic response of beans. Photosynthetica, 53, 157–160.CrossRefGoogle Scholar
  20. Heagle, A. S. (1989). Ozone and crop yield. Annual Review of Phytopathology, 27, 397–342.CrossRefGoogle Scholar
  21. Inclan, R., Ribas, A., Penuelas, J., & Gimeno, B. S. (1999). The relative sensitivity of different Mediterranean plant species to ozone exposure. Water, Air, and Soil Pollution, 116, 273–277.CrossRefGoogle Scholar
  22. Ismail, I. M., Basahi, J. M., & Hassan, I. A. (2014). Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient O3 at a rural site in Egypt. Science of the Total Environment, 497–498, 585–593.CrossRefGoogle Scholar
  23. Kadi, M. W. (2009). Soil pollution hazardous to environment: a case study of the chemical composition and correlation to automobile traffic of the roadside soil of Jeddah City, Saudi Arabia. Journal of Hazardous Materials, 168, 1289–1283.CrossRefGoogle Scholar
  24. Khan, M. R., & Kahn, M. W. (1994). Single and interactive effects of O3 and SO2 on tomato. Environmental and Experimental Botany, 34, 461–469.CrossRefGoogle Scholar
  25. Leeuw de, F. A. A. M., & van Zantwoort, E. D. G. (1997). Mapping of exceedances of ozone critical levels for crops and forest trees in the Netherlands. Environmental Pollution, 96, 89–98.CrossRefGoogle Scholar
  26. Lorenzini, G., Nali, C., & Panicucci, A. (1994). Surface ozone in Pisa (Italy): a six-year study. Atmospheric Environment, 28, 3155–3164.CrossRefGoogle Scholar
  27. Magram, S. F. (2009). A review on the environmental issues in Jeddah, Saudi Arabia with special focus on water pollution. Journal of Environmental Science and Technology, 2, 120–132.CrossRefGoogle Scholar
  28. Manning, W. J. (1999). Use of protective chemicals to assess the effects of ambient O3 in plants. In S. B. Agarwal & M. Agrawal (Eds.), Environmental pollution and plant response (pp. 247–258). Boca Raton: Lewis.Google Scholar
  29. Manning, W. J., Paoletti, E., Sandermann, H., Jr., & Ernst, D. (2011). Ethylene diurea (EDU): a research tool for assessment and verification of the effects of ground level ozone on plants under natural conditions. Environmental Pollution, 159, 3283–3293.CrossRefGoogle Scholar
  30. Mills, G., Bruse, A., Gimeno, B., Bermejo, V., Holland, M., Emberson, L., & Pleijel, H. (2007). A synthesis of AOT40-based response functions and critical levels of O3 for agricultural and horticultural crops. Atmospheric Environment, 41, 2630–2640.CrossRefGoogle Scholar
  31. Minnocci, A., Panicucci, A., & Vitagliano, C. (1995). Gas exchange and morphological stomatal parameters in olive plants exposed to ozone. Pagg. In G. Lorenzini & G. F. Soldatini (Eds.), Responses of plants to air pollution (pp. 77–81). Pacini, Pisa: Special issue of Agricoltura Mediterranea.Google Scholar
  32. Minnocci, A., Panicucci, A., Sebastiani, L., Lorenzini, G., & Vitagliano, C. (1999). Physiological and morphological responses of olive plants to O3 exposure during a growing season. Tree Physiology, 19, 391–397.CrossRefGoogle Scholar
  33. Nali, C., Ferretti, M., Pellegrini, M., & Lorenzini, G. (2001). Monitoring and biomonitoring of surface ozone in Florence, Italy. Environmental Monitoring and Assessment, 69, 159–174.CrossRefGoogle Scholar
  34. Nali, C., Francini, A., & Lorenzini, G. (2006). Biological monitoring of ozone: the twenty-year Italian experience. Journal of Environmental Monitoring, 8, 25–32.CrossRefGoogle Scholar
  35. Paoletti, E., Manning, W. J., Spaziani, F., & Tagliaferro, F. (2007). Gravitational infusion of EDU into trunks protected adult European ash trees (Fraxinus excelsior L.) from foliar O3 injury. Environmental Pollution, 145, 869–873.CrossRefGoogle Scholar
  36. Pellegrini, E. (2014). PSII photochemistry is the primary target of oxidative stress imposed by ozone in Tilia americana. Urban Forestry & Urban Greening, 13, 94–102.CrossRefGoogle Scholar
  37. Pellegrini, E., Carucci, M. G., Campanella, A., Lorenzini, G., & Nali, C. (2011). Ozone stress in Melissa officinalis plants assessed by photosynthetic function. Environmental and Experimental Botany, 73, 94–101.CrossRefGoogle Scholar
  38. Pellegrini, E., Francini, A., Lorenzini, G., & Nali, C. (2015). Ecophysiological and antioxidant traits of Salvia officinalis under ozone stress. Environmental Science and Pollution Research, 22, 13083–13093.CrossRefGoogle Scholar
  39. Ribas, A., Penuelas, J., Elvira, S., & Gimeno, B. S. (2005). Ozone exposure induces the activation of leaf senescence-related processes and morphological and growth changes in seedlings of Mediterranean tree species. Environmental Pollution, 134, 291–300.CrossRefGoogle Scholar
  40. Roberts, B. R. (1987). Photosynthetic response of yellow-poplar seedlings to the antioxidant chemical ethylenediurea. Journal of Arboriculture, 13, 154–158.Google Scholar
  41. Roberts, B. R., Jensen, K. F., & Cathey, H. M. (1985). Modification of ozone sensitivity in seedlings by ethylenediurea: soil application vs. stem injection. Journal of the American Society for Horticultural Science, 110, 178–180.Google Scholar
  42. Roberts, B. R., Wilson, L. R., Cascino, J. J., & Smith, G. P. (1987). Autoradiographic studies of ethylene-diurea distribution in woody plants. Environmental Pollution, 46, 81–86.CrossRefGoogle Scholar
  43. Roy, S., Beig, G., & Jacob, D. (2008). Seasonal distribution of ozone and its precursors over the tropical Indian region using regional chemistry-transport model. Journal Geophysics Research, 113, 2156–2202.CrossRefGoogle Scholar
  44. Royal Society. (2008). Ground-level ozone in the 21st century: future trends, impacts and policy implications. Science Policy Report 15/08, The Royal Society, London, 132 pp.Google Scholar
  45. Saitanis, C. J., Lekkas, D. V., Agathokleous, E., & Flouri, F. (2015). Screening agrochemicals as potential protectants of plants against ozone phytotoxicity. Environmental Pollution, 197, 247–255.CrossRefGoogle Scholar
  46. Sarkar, A., & Agrawal, S. B. (2010). Elevated ozone and two modern wheat cultivars: an assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters. Environmental and Experimental Botany, 69, 328–337.CrossRefGoogle Scholar
  47. Sebastiani, L., Minnocci, A., Scebba, F., Vitagliano, C., Panicucci, A., & Lorenzini, G. (2002). Physiological and biochemical reactions of olive genotypes during site-relevant O3 exposure. Acta Horticulturae, 586, 445–448.CrossRefGoogle Scholar
  48. Singh, S., Agrawal, S. B., Singh, P., & Agrawal, M. (2010). Screening three cultivars of Vigna mungo L. against ozone by application of ethylenediurea (EDU). Ecotoxicology and Environmental Safety, 73, 1765–1775.CrossRefGoogle Scholar
  49. Singh, A. A., Singh, S., Agrawal, M., & Agrawal, S. B. (2014). Assessment of ethylene diurea-induced protection in plants against ozone phytotoxicity. Reviews Environmental Contamination and Toxicology, 233, 129–184.Google Scholar
  50. Taylor, H. J., Ashmore, M. R., & Bell, J. N. B. (1990). Air Pollution Injury to Vegetation. A guidance manual commissioned by HM Industrial Air Pollution Inspectorate of the Health and Safety Executive. Imperial College (p. 68). London: IEHO Publication.Google Scholar
  51. Tiwari, S., Rai, R., & Agrawal, M. (2008). Annual and seasonal variations in tropospheric ozone concentrations around Varanasi. International Journal of Remote Sensing, 29, 4499–4514.CrossRefGoogle Scholar
  52. Vitagliano, C., Minnocci, A., Sebastiani, L., Panicucci, A., & Lorenzini, G. (1999). Physiological response of two olive genotypes to gaseous pollutants. Acta Horticulturae, 586, 431–434.CrossRefGoogle Scholar
  53. von Caemmerer, S., & Farquhar, G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376–387.CrossRefGoogle Scholar
  54. WHO, World Health Organization. (2000). Air quality guidelines for Europe, second edition. Copenhagen, WHO Regional Office for Europe (WHO regional publications. European series; No 91).Google Scholar
  55. WHO, World Health Organization. (2006). Air quality guidelines: global update 2005, particulate matter, ozone, nitrogen dioxide and sulphur dioxide. Copenhagen: WHO Regional Office for Europe.Google Scholar
  56. Wittig, V. E., Ainsworth, E. A., & Long, S. P. (2007). To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last three decades of experiments. Plant, Cell & Environment, 30, 1150–1162.CrossRefGoogle Scholar
  57. Yan, K., Chen, W., He, X., Zhang, C., Xu, S., & Wang, L. (2010). Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Environmental and Experimental Botany, 69, 198–204.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. M. Basahi
    • 1
  • I. M. Ismail
    • 1
  • N. S. Haiba
    • 2
  • I. A. Hassan
    • 1
    • 3
  • G. Lorenzini
    • 4
  1. 1.Air Pollution Laboratory (APL), Centre of Excellence in Environmental Studies (CEES)King Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Chemistry, Faculty of EducationAlexandria UniversityAlexandriaEgypt
  3. 3.Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  4. 4.Department of Agriculture, Food and EnvironmentThe University of PisaPisaItaly

Personalised recommendations