Distribution and risk assessment of selected organochlorine pesticides in Kyzyl Kairat village from Kazakhstan

  • Yerbolat SailaukhanulyEmail author
  • Lars Carlsen
  • Akyl Tulegenov
  • Asil Nurzhanova
  • Bulat Kenessov
  • Duisek Kamysbayev


Concentrations of selected organochlorine pesticides (OCPs), i.e., 4,4ʹ-dichlorodiphenyltrichloroethane (p,pʹ-DDT), its metabolites (p,pʹ-DDE, p,pʹ-DDD), and hexachlorocyclohexanes (HCHs), have been determined in 100 soil samples collected from a contaminated site centered around a former storehouse in the Kyzyl Kairat village, Almaty region, Kazakhstan, which constitutes an exemplary case example. The OCPs were observed in all analyzed soil samples, with predominance of α-HCH, p,p′-DDD, p,p′-DDE, and p,p′-DDT. Total concentrations ranged from 1.38 to 11,100 μg kg−1 with an average value of 1040 μg kg−1 for DDT and its metabolites and 0.1 to 438 μg kg−1 with an average value of 24 μg kg−1 for HCHs. The observed concentrations of the OCPs were found to be in agreement with previous studies and are rationalized in terms of the possible degradation pathways of DDTs and HCHs. Spatial distribution patterns of OCPs are elucidated by contour maps. Observed concentrations of the OCPs were used to evaluate the cancer risk to humans via ingestion, dermal contact, and inhalation of soil particles. The cancer risk mainly occurs from ingestion, whereas dermal exposure contributes to a minor extent to the total cancer risk. The risk associated with inhalation was found to be negligible. The total cancer risk for the studied OCPs were found to be p,pʹ-DDT ˃ p,pʹ-DDE ˃ p,pʹ-DDD ˃ α-HCH ˃ β-HCH ˃ γ-HCH.


DDT DDT metabolites HCHs Human carcinogens Spatial distribution Soil Risk assessment 



This work was performed as part of the PhD project of Yerbolat Sailaukhanuly and the project “Development of the base of methodological approaches to solution of food safety problems based on physical chemical and biological studies” (No. 659/GF1) both funded by the Ministry of Education and Science of the Republic of Kazakhstan.


  1. Abhilash, P., & Singh, N. (2008). Distribution of hexachlorocyclohexane isomers in soil samples from a small scale industrial area of Lucknow, North India, associated with Lindane production. Chemosphere, 73, 1011–1015. doi: 10.1016/j.chemosphere.2008.07.037.CrossRefGoogle Scholar
  2. Alamdar, A., Syed, J., Malik, R., Katsoyiannis, A., Liu, J., & Li, J. (2014). Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange. Science of Total Environment, 470–471, 733–741. doi: 10.1016/j.scitotenv.2013.09.053.CrossRefGoogle Scholar
  3. Androutsopoulos, V., Hernandez, A., Liesivuori, J., & Tsatsakis, A. (2013). A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides. Toxicology, 307, 89–94. doi: 10.1016/j.tox.2012.09.CrossRefGoogle Scholar
  4. ATSDR. (2002). Toxicological profile for DDT, DDE, and DDD. Accessed 18 October 2015.Google Scholar
  5. ATSDR. (2004). Public health assessment guidance manual (Update). Accessed January 2015).Google Scholar
  6. ATSDR. (2005). Toxicological profile for alpha-, beta-, gamma-, and delta-hexachlorocyclohexane. Accessed 18 October 2015.Google Scholar
  7. Barnes, S. (1964). Mesoscale objective analysis using weighted time-series observations. NOAA Technical Memorandum. National Severe Storms laboratory.Google Scholar
  8. EC. (2006). Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC Accessed 18 October 2015.
  9. EC. (2008). Regulation (EC) No 149/2008 of the European Parliament and of the Council of 29 January 2008 amending Regulation (EC) No 396/2005 of the European Parliament and of the Council by establishing Annexes II, III and IV setting maximum residue levels for products covered by Annex I there to Accessed 18 October 2015
  10. El-Shahawi, M., Hamza, A., Bashammakh, A., & Al-Saggaf, W. (2010). An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta, 80, 1587–1597. doi: 10.1016/j.talanta.2009.09.055.CrossRefGoogle Scholar
  11. Environmental code of the Republic of Kazakhstan. (2007). Accessed 18 October 2015.
  12. Erdinger, L., Eckl, P., Ingel, F., Khussainova, S., Utegenova, E., & Mann, V. (2004). The Aral Sea disaster human biomonitoring of Hg, As, HCB, DDE, and PCBs in children living in Aralsk and Akchi, Kazakhstan. International Journal of Hygiene and Environmental Health, 207, 541–547. doi: 10.1078/1438-4639-00325.CrossRefGoogle Scholar
  13. Foreman, W., & Gates, P. (1997). Matrix-enhanced degradation of p, p′-DDT during gas chromatographic analysis: a consideration. Evironmental Science and Technology, 31, 905–910. doi: 10.1021/es960671q.CrossRefGoogle Scholar
  14. Ge, J., Woodward, L., Li, Q., & Wang, J. (2013). Composition, distribution and risk assessment of organochlorine pesticides in soils from the Midway Atoll, North Pacific Ocean. Science of Total Environment, 452–453, 421–426. doi: 10.1016/j.scitotenv.2013.03.015.CrossRefGoogle Scholar
  15. GRI online software. (2014). Accessed 23 August 2015.
  16. Heberer, T., & Dünnbier, U. (1999). DDT metabolite bis(chlorophenyl)acetic acid: the neglected environmental contaminant. Evironmental Science and Technology, 33, 2346–2351. doi: 10.1021/es9812711.CrossRefGoogle Scholar
  17. Hooper, K., Petreas, M., She, J., Visita, P., Winkler, J., & McKinney, M. (1997). Analysis of breast Mmlk to assess exposure to chlorinated contaminants in Kazakstan: PCBs and organochlorine pesticides in Southern Kazakstan. Environmental Health Perspectives, 105, 1250–1254. doi: 10.2307/3433905.CrossRefGoogle Scholar
  18. IARC. (1987). IARC monographs programme on the evaluation of carcinogenic risks to humans.Vol.1-42.Occupational exposures in insecticide application, and some pesticides. Accessed 20 November 2015.Google Scholar
  19. IRIS DDD. (1988). Integrated risk information system.US EPA. Accessed 20 November 2015.Google Scholar
  20. IRIS DDE. (1988). Integrated Risk Information System. U.S. Environmental Protection Agency. Accessed 20 November 2015.Google Scholar
  21. IRIS DDT. (1987). Integrated Risk Information System. U.S. Environmental Protection Agency. Accessed 20 November 2015.Google Scholar
  22. IRIS HCH. (1987). Integrated Risk Information System. U.S. Environmental Protection Agency. Accessed 20 November 2015.Google Scholar
  23. Jensen, S., Mazhitova, Z., & Zetterström, R. (1997). Environmental pollution and child health in the Aral sea region in Kazakhstan. Science of Total Environment, 206, 187–193. doi: 10.1016/S0048-9697(97)00225-8.CrossRefGoogle Scholar
  24. Kenessov, B., Alimzhanova, M., Sailaukhanuly, Y., Baimatova, N., Abilev, M., Batyrbekova, S., Carlsen, L., Tulegenov, A., & Nauryzbayev, M. (2012). Transformation products of 1,1-dimethylhydrazine and their distribution in soils of fall places of rocket carriers in Central Kazakhstan. Science of Total Environment, 427–428, 78–85. doi: 10.1016/j.scitotenv.2012.04.017.CrossRefGoogle Scholar
  25. Li, X., Zhu, Y., Liu, X., Fu, S., Xu, X., & Cheng, H. (2006). Distribution of HCHs and DDTs in soils from Beijing City, China. Archives Of Environmental Contamination And Toxicology, 51, 329–336. doi: 10.1007/s00244-005-0016-9.CrossRefGoogle Scholar
  26. Lozowicka, B., Kaczynski, P., Paritova, A., Kuzembekova, G., Abzhalieva, A., & Sarsembayeva, N. (2014). Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides. Food and Chemical Toxicology, 64, 238–248. doi: 10.1016/j.fct.2013.11.038.CrossRefGoogle Scholar
  27. Lutter, C., Iyenga, V., Barnes, R., Chuvakova, T., Kazbekova, G., & Sharmanov, T. (1998). Breast milk contamination in Kazakhstan: implications for infant feeding. Chemosphere, 31, 1761–1772. doi: 10.1016/S0045-6535(98)00241-0.CrossRefGoogle Scholar
  28. Man, Y., Chow, K., Wang, H., Lau, K., Sun, X., & Wu, S. (2011). Health risk assessment of organochlorine pesticides with emphasis on DDTs and HCHs in abandoned agricultural soils. Journal of Environmental Monitoring, 13, 2250–2259. doi: 10.1039/c1em10168d.CrossRefGoogle Scholar
  29. Martınez-Salinas, R., Dıaz-Barriga, F., Batres-Esquivel, L., & Perez-Maldonado, I. (2011). Assessment of the levels of DDT and its metabolites in soil and dust samples from Chiapas, Mexico. Bulletin of Environmental Contamination and Toxicology, 86, 33–37. doi: 10.1007/s00128-010-0174-y.CrossRefGoogle Scholar
  30. Mazhitova, Z., Jensen, S., Ritzen, M., & Zetterström, R. (1998). Chlorinated contaminants, growth and thyroid function in schoolchildren from the Aral Sea region in Kazakhstan. Acta Paediatrica, 87, 991–995. doi: 10.1111/j.1651-2227.1998.tb01771.x.CrossRefGoogle Scholar
  31. Mishra, K., Sharma, R., & Kumar, S. (2012). Contamination levels and spatial distribution of organochlorine pesticides in soils from India. Ecotoxicology and Environmental Safety, 76, 215–225. doi: 10.1016/j.ecoenv.2011.09.014.CrossRefGoogle Scholar
  32. Mostafalou, S., & Abdollahi, M. (2013). Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology, 268, 157–177. doi: 10.1016/j.taap.2013.01.025.CrossRefGoogle Scholar
  33. Mrema, E., Rubino, F., Brambilla, G., Moretto, A., Tsatsakis, A., & Colosio, C. (2013). Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology, 307, 74–88. doi: 10.1016/j.tox.2012.11.015.CrossRefGoogle Scholar
  34. NTP. (2014a). Report on Carcinogens. DDT. Eighth report on carcinogens. National Toxicology Program. Accessed 20 November 2015.Google Scholar
  35. NTP. (2014b). Report on Carcinogens. Linadane, hexachlorocyclohaxane (technical grade), and other hexachlorocyclohaxane isomers. National Toxicology Program. Accessed 20 November 2015.Google Scholar
  36. Nurzhanova, A. K. (2010). Obsolete pesticides pollution and phytoremediation of contaminated soil in Kazakhstan. In NATO Science for Peace and Security Series C: Environmental Security (pp. 87–111). Berlin: Springer. doi: 10.1007/978-90-481-3592-9_6.Google Scholar
  37. Nurzhanova, A., Kalugin, S., & Zhambakin, K. (2013). Obsolete pesticides and application of colonizing plant species for remediation of contaminated soil in Kazakhstan. Environmental Science and Pollution Research, 20, 87–111. doi: 10.1007/s11356-012-1111-x.CrossRefGoogle Scholar
  38. PASS. (2015). Way2Drug, predictive services. 18 April 2016.Google Scholar
  39. Rogan, W., & Chen, A. (2005). Health risks and benefits of bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT). Lancet, 366, 763–773. doi: 10.1016/S0140-6736(05)67182-6.CrossRefGoogle Scholar
  40. Sailaukhanuly, Y., Kenessov, B., & Amutova, F. (2013a). Concentrations of organochlorine pesticides in food samples taken from markets in Kazakhstanby optmized GC-MS method.Abstracts of 245 th ACS National Meeting. New Orleans, AGFD-206.Google Scholar
  41. Sailaukhanuly, Y., Zhakupbekova, A., Amutova, F., & Carlsen, L. (2013b). On the ranking of chemicals based on their PBT characteristics. Comparison of different ranking methodologies using selected POPs as an illustrative example. Chemosphere, 90, 112–117. doi: 10.1016/j.chemosphere.2012.08.015.CrossRefGoogle Scholar
  42. Sizdikov, O. (2010). Preparation of the first national report on Persistent Organic Pollutants Secretariat of the Stockholm Convention on POPs: research report. 12 January 2015.Google Scholar
  43. Tarcau, D., Cucu-Man, S., Boruvkova, J., Klanova, J., & Covaci, A. (2013). Organochlorine pesticides in soil, moss and tree-bark from North-Eastern Romania. Science of Total Environment, 456–457, 317–324. doi: 10.1016/j.scitotenv.2013.03.103.CrossRefGoogle Scholar
  44. Toleubayev, K., Jansen, K., & Van Huis, A. (2011). From integrated pest management to indiscriminate pesticide use in Kazakhstan. Journal of Sustainable Agriculture, 35, 350–375. doi: 10.1080/10440046.2011.562036.CrossRefGoogle Scholar
  45. UNDP/GEF. (2009). National implementation plan of the Republic of Kazakhstan on the obligation of under the Stockholm Convention on persistent organic pollutants approved by the decree of the government of the Republic of Kazakhstan from 8 December 2009 N 261. Astana. = UNEP-POPS-NIP-Kazakhstan-1.English.pdf. Accessed 20 November 2015Google Scholar
  46. USEPA. (1992). Preparation of soil sampling protocols: sampling techniques and strategies. Accessed 12 January 2015.Google Scholar
  47. USEPA. (2002). Method for determination of total organic carbon (TOC) in soils and sediments method, NCEA-C- 1282 EMASC-001. Accessed 12 January 2015.Google Scholar
  48. USEPA. (2009). Risk assessment guidance for superfund. Vol. I: human health evaluation manual (F, supplemental guidance for inhalation risk assessment) EPA/540/R/070/002. Accessed 12 January 2015.Google Scholar
  49. USEPA. (2011). Exposure factors handbook. EPA/600/R-090/052F. Accessed 12 January 2015.Google Scholar
  50. Vijgen, J., & Egenhofer, C. (2009). Obsolete pesticides. A ticking time bomb and why we have to act. Accessed 12 January 2015.Google Scholar
  51. Waliszewski, S. (1993). Residues of lindane, HCH isomers and HCB in the soil after lindane application. Environmetal Pollution, 3, 289–293. doi: 10.1016/0269-7491(93)90131-7.CrossRefGoogle Scholar
  52. Wu, W., Xu, Y., Schramm, K., & Kettrup, A. (1997). Study of sorption, biodegradation and isomerization of HCH in stimulated sediment/water system. Chemosphere, 35, 1887–1894. doi: 10.1016/S0045-6535(97)00266-X.CrossRefGoogle Scholar
  53. Xu, W., Wang, X., & Cai, Z. (2013). Analytical chemistry of the persistent organic pollutants identified in the Stockholm Convention: A review. Analytica Chimica Acta, 790, 1–13. 10.1016/j.aca.2013.04.026.CrossRefGoogle Scholar
  54. Yang, W., Wang, R., Zhou, C., & Li, F. (2009). Distribution and health risk assessment of organochlorine pesticides (OCPs) in industrial site soils: a case study of urban renewal in Beijing, China. Journal of Environmental Sciences, 21, 366–372. doi: 10.1016/S1001-0742(08)62278-0.CrossRefGoogle Scholar
  55. Zhang, H., Luo, Y., Zhao, Q., Wong, M., & Zhang, G. (2006). Residues of organochlorine pesticides in Hong Kong soils. Chemosphere, 63, 633–641. doi: 10.1016/j.chemosphere.2005.08.006.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yerbolat Sailaukhanuly
    • 1
    Email author
  • Lars Carlsen
    • 1
    • 2
  • Akyl Tulegenov
    • 1
  • Asil Nurzhanova
    • 3
  • Bulat Kenessov
    • 1
  • Duisek Kamysbayev
    • 1
  1. 1.Center of Physical Chemical Methods of Research and AnalysisAl-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Awareness CenterRoskildeDenmark
  3. 3.Institute of Plant Biology and BiotechnologyAlmatyKazakhstan

Personalised recommendations