Advertisement

Photosynthetic pigment laser-induced fluorescence indicators for the detection of changes associated with trace element stress in the diatom model species Phaeodactylum tricornutum

  • Maria Teresa Cabrita
  • Carla Gameiro
  • Andrei B. Utkin
  • Bernardo Duarte
  • Isabel Caçador
  • Paulo Cartaxana
Article

Abstract

This work reports changes on cell number, growth rate, trace element content, chlorophyll a (Chl a) and carotenoid concentrations, and laser-induced fluorescence (LIF) spectra of Phaeodactylum tricornutum exposed to Co, Ni, Cu, Zn, Cd, Hg, Pb, and a mixture of all elements combined (Mix). The total levels of trace elements associated with the cells were significantly higher in the exposed than in control ones. Concomitantly, specific cell growth was significantly lower in exposed P. tricornutum, suggesting that trace elements affected the microalgae physiology. The LIF emission spectra showed two typical emission bands in red (683–698 nm) and far-red (725–730 nm) regions. Deviations in LIF spectra and changes in F685/F735 ratio were investigated as indicators of trace element-induced changes. Fluorescence intensity emitted by exposed microalgae decreased in far-red region when compared to control cells, suggesting Chl a damage and impairment of pigment biosynthesis pathways by trace elements, confirmed by Chl a and carotenoid concentration decrease. Significant increase in F685/F735 ratio was detected for all elements except Zn and more accentuated for Co, Hg, and Mix. Significant deviations in wavelength emission maxima in red region were also more significant (between 8 and 13 nm) for Co, Hg, and Mix. Growth changes agreed with deviations in LIF spectra and F685/F735 ratio, supporting their applicability as indicators. This study clearly shows F685/F735 ratio and the deviations in wavelength emission maxima as adequate trace element stress indicators and P. tricornutum as a promising biomonitor model species. LIF-based techniques can be used as time-saving, highly sensitive, and effective alternative tool for the detection of trace element stress, with potential for remote sensing and trace element contamination screening in marine coastal areas.

Keywords

Laser-induced fluorescence indicators LIF Phaeodactylum tricornutum Trace element stress detection and monitoring Marine coastal areas 

Notes

Acknowledgments

M.T. Cabrita express appreciation for the support from the “Fundação para a Ciência e a Tecnologia” (FCT), through Grant No. SFRH/BPD/50348/2009. C. Gameiro and this work were also funded by the Fundação para a Ciência e a Tecnologia (FCT, Portugal) within the framework of the project BenthicLIF-Estuarine phytobenthic communities studied by laser induced fluorescence (PTDC/MAR/117929/2010). The authors would like to thank the anonymous reviewers for their constructive comments, which helped improve the manuscript.

References

  1. Aggarwal, A., Sharma, I., Tripathi, B.N., Munjal, A.K., Baunthiyal, M., & Sharma, V. (2012). Metal toxicity and Photosynthesis. In S. Itoh, P. Mohanty, K.N. Guruprasad (Eds.), Photosynthesis: overviews on recent progress and future perspectives (pp. 229–236), Chapter 6.Google Scholar
  2. Apostol, S., Viau, A. A., Tremblay, N., Briantais, J.-M., Prasher, S., Parent, L.-E., & Moya, I. (2003). Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants. Canadian Journal of Remote Sensing, 29(1), 57–65.CrossRefGoogle Scholar
  3. Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113.CrossRefGoogle Scholar
  4. Barbini, R., Colao, F., Fantoni, R., Micheli, C., Palucci, A., & Ribezzo, S. (1998). Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton. ICES Journal of Marine Science, 55, 793–802.CrossRefGoogle Scholar
  5. Brand, L. E., Sunda, W. G., & Guillard, R. R. L. (1986). Reduction of marine phytoplankton reproduction rates by copper and cadmium. Journal of Experimental Marine Biology and Ecology, 96, 225–250.CrossRefGoogle Scholar
  6. Buschmann, C. (2007). Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynthesis Research, 92, 261–271.CrossRefGoogle Scholar
  7. Cabrita, M. T., Raimundo, J., Pereira, P., & Vale, C. (2014). Immobilised Phaeodactylum tricornutum as biomonitor of trace element availability in the water column during dredging. Environmental Science and Pollution Research, 21(5), 3572–2581.CrossRefGoogle Scholar
  8. Cid, A., Herrero, C., Torres, E., & Abalde, J. (1995). Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquatic Toxicology, 31, 165–174.CrossRefGoogle Scholar
  9. Cid, A., Torres, E., Herrero, C., & Abalde, J. E. (1997). Disorders provoked by copper in the marine diatom Phaeodactylum tricornutum in short-time exposure assays. Cahiers de Biologie Marine, 38, 201–206.Google Scholar
  10. Cotté-Krieff, M.-H., Guieu, C., Thomas, A. J., & Martin, J.-M. (2000). Sources of Cd, Cu, Ni and Zn in Portuguese coastal waters. Marine Chemistry, 71, 199–214.CrossRefGoogle Scholar
  11. D’Ambrosio, N., Szábo, K., & Lichtenthaler, H. K. (1992). Increase of the chlorophyll fluorescence ratio F690/F735 during the autumnal chlorophyll breakdown. Radiation and Environmental Biophysics, 31, 51–62.CrossRefGoogle Scholar
  12. Dahn, H. G., Günther, K. P., & Lüdeker, W. (1992). Characterization of drought stress of maize and wheat canopies by means of resolved laser induced fluorescence. EARSel Advances in Remote Sensing, 1(2-II), 12–19.Google Scholar
  13. Davison, W., & Zhang, H. (1994). In situ speciation measurements of trace components in natural waters using thin-film gels. Nature, 367, 546–548.CrossRefGoogle Scholar
  14. De Filippis, L. F., & Pallaghy, C. K. (1976). The effect a sublethal concentration of mercury and zinc on Chlorella. I. Growth characteristic and uptake of metals. Zeitschrift für Pflanzenphysiologie, 78, 197–207.CrossRefGoogle Scholar
  15. De Filippis, L. F., & Pallaghy, C. K. (1994). Heavy metals: sources and biological effects. In L. C. Rai & J. P. Gaur (Eds.), Advances in limnology series: algae and water pollution (pp. 31–77). Stuttgart: E. Scheizerbartsche Press.Google Scholar
  16. Deng, C. N., Zhang, D. Y., Pan, X. L., Chang, F. Q., & Wang, S. Z. (2013). Toxic effects of mercury on PSI and PSII activities, membrane potential and transthylakoid proton gradient in Microsorium pteropus. Journal of Photochemistry and Photobiology B: Biology, 127(5), 1–7.CrossRefGoogle Scholar
  17. Doney, S. C. (2010). The growing human footprint on coastal and open-ocean biogeochemistry. Science, 328, 1512–1516.CrossRefGoogle Scholar
  18. Eggleton, J., & Thomas, K. V. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30, 973–980.CrossRefGoogle Scholar
  19. Fisher, N. S. (1981). On the selection for heavy metal tolerance in diatoms from the Derwent Estuary, Tasmania. Australian Journal of Marine and Freshwater Research, 32, 555–561.CrossRefGoogle Scholar
  20. Franck, F., Juneau, P., & Popovic, R. (2002). Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochimica et Biophysica Acta, 1556, 239–246.CrossRefGoogle Scholar
  21. González-Dávila, M. (1995). The role of phytoplankton cells on the control of heavy metal concentration in seawater. Marine Chemistry, 48(3–4), 215–236.CrossRefGoogle Scholar
  22. Govindjee. (1995). Sixty-three years since Kautsky: chlorophyll a fluorescence. Australian Journal of Plant Physiology, 22, 131–160.CrossRefGoogle Scholar
  23. Guillard, R. R. L., & Ryther, J. H. (1962). Studies on marine planktonic diatoms, I. Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Canadian Journal of Microbiology, 8(2), 229–239.CrossRefGoogle Scholar
  24. Hannan, P. J., & Patouillet, C. (1972). Effect of mercury on algal growth rates. Biotechnology and Bioengineering, 14, 93–101.CrossRefGoogle Scholar
  25. Horvatić, J., & Peršić, V. (2007). The Effect of Ni2+, Co2+, Zn2+, Cd2+ and Hg2+ on the growth rate of marine diatom Phaeodactylum tricornutum Bohlin: microplate growth inhibition test. Bulletin of Environmental Contamination and Toxicology, 79, 494–498.CrossRefGoogle Scholar
  26. Irmer, G. (1985). Zum einfluß der apparatefunktion auf die bestimmung von streuquerschnitten und lebensdauern aus optischen phononenspektren. Experimentelle Technik der Physik, 33, 501–506.Google Scholar
  27. Jakimska, A., Konieczka, P., Skóra, K., & Namieśnik, J. (2011). Bioaccumulation of metals in tissues of marine animals, Part I: the role and impact of heavy metals on organisms. Polish Journal of Environmental Studies, 20(5), 1117–1125.Google Scholar
  28. Kumar, K. S., Dahms, H.-U., Lee, J.-S., Kim, H. C., Lee, W. C., & Shin, K.-H. (2014). Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicology and Environmental Safety, 104, 51–71.CrossRefGoogle Scholar
  29. Küpper, H., Küpper, F., & Spiller, M. (1996). Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. Journal of Experimental Botany, 47(295), 259–266.CrossRefGoogle Scholar
  30. Küpper, H., Setlik, I., Spiller, M., Küpper, F. C., & Prasil, O. (2002). Heavy-metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. Journal of Phycology, 38, 429–441.CrossRefGoogle Scholar
  31. Lavrov, A., Utkin, A. B., Marques da Silva, J., Vilar, R., Santos, N. M., & Alves, B. (2012). Water stress assessment of cork oak leaves and maritime pine needles bases on LIF spectra. Optics and Spectroscopy, 112, 271–279.CrossRefGoogle Scholar
  32. Le Faucheur, S., Campbell, P. G. C., Fortin, C., & Slaveykova, V. (2014). Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling. Environmental Toxicology and Chemistry, 33(6), 1211–1224.CrossRefGoogle Scholar
  33. Lichtenthaler, H. K., & Rinderle, U. (1988). The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry, 19, S29–S85.CrossRefGoogle Scholar
  34. Lichtenthaler, H. K., Lang, M., Sowinska, M., Heisel, F., & Miehé, J. A. (1996). Detection of vegetation stress via a new high resolution fluorescence imaging system. Journal of Plant Physiology, 148(5), 599–612.CrossRefGoogle Scholar
  35. Machado, M. D., & Soares, E. V. (2014). Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress. Aquatic Toxicology, 147, 1–6.CrossRefGoogle Scholar
  36. Markina, Z. V., & Aizdaicher, N. A. (2006). Content of photosynthetic pigments, growth, and cell size of microalgae Phaeodactylum tricornutum in the copper-polluted environment. Russian Journal of Plant Physiology, 53(3), 305–309.CrossRefGoogle Scholar
  37. Maurya, R., & Gopal, R. (2008). Laser-induced fluorescence ratios of Cajanus cajan L. Under the stress of cadmium and its correlation with pigment content and pigment ratios. Applied Spectroscopy, 62(4), 433–438.CrossRefGoogle Scholar
  38. Maurya, R., Prasad, S. M., & Gopal, R. (2008). LIF technique offers the potential for the detection of cadmium-induced alteration in photosynthetic activities of Zea mays L. Journal of Photochemistry and Photobiology C Photochemistry Reviews, 9, 29–35.CrossRefGoogle Scholar
  39. Mishra, K. B., & Gopal, R. (2005). Laser induced fluorescence spectra of leaves of wheat seedlings growing under cadmium stress. General and Applied Plant Physiology, 31, 181–196.Google Scholar
  40. Moreira, E. G., Vassilieff, I., & Vassilieff, V. S. (2001). Developmental lead exposure. Behavioral alterations in the short and long term. Neurotoxicology and Teratology, 23, 489–495.CrossRefGoogle Scholar
  41. Nyholm, N., & Källqvist, T. (1989). Methods for growth inhibition toxicity tests with freshwater algae. Environmental Toxicology and Chemistry, 8(8), 689–703.CrossRefGoogle Scholar
  42. OECD, Organisation for Economic Co-operation and Development, Freshwater algal and cyanobacteria, growth inhibition test - test guideline 201 (2002). OECD Guidelines for the testing of chemicals, Paris, France, 1(2), 1–25.Google Scholar
  43. Pan, K., & Wang, W.-X. (2012). Trace metal contamination in estuarine and coastal environments in China. Science of the Total Environment, 421–422, 3–16.CrossRefGoogle Scholar
  44. Pandey, J. K., & Gopal, R. (2011). Laser-induced chlorophyll fluorescence and reflectance spectroscopy of cadmium treated Triticum aestivum L. Plants. Spectroscopy: An International Journal, 26(2), 129–139.CrossRefGoogle Scholar
  45. Pfϋndel, E. (1998). Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynthesis Research, 56, 185–195E.CrossRefGoogle Scholar
  46. Reed, R. H., & Gadd, G. M. (1989). Metal tolerance in eukaryotic and prokaryotic algae. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: evolutionary aspects (pp. 105–118). Boca Raton: CRC Press.Google Scholar
  47. Rogers, S. I., & Greenaway, B. A. (2005). UK perspective on the development of marine ecosystem indicators. Marine Pollution Bulletin, 50, 9–19.CrossRefGoogle Scholar
  48. Scarano, G., & Morelli, E. (2003). Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Science, 165, 803–810.CrossRefGoogle Scholar
  49. Schuerger, A. C., Capelle, G. A., Di Benedetto, J. A., Mao, C., Chi, N., Mark, T., Evans, D., Richards, J. T., Blank, T. A., & Stryjewski, E. C. (2003). Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (Paspalum notatum Flugge.). Remote Sensing of Environment, 84, 572–588.CrossRefGoogle Scholar
  50. Smith, C. L., Steele, J. E., Stauber, J. L., Dianne, F., & Jolley, D. F. (2014). Copper-induced changes in intracellular thiols in two marine diatoms: Phaeodactylum tricornutum and Ceratoneis closterium. Aquatic Toxicology, 156, 211–220.CrossRefGoogle Scholar
  51. Strickland, J. D. H., & Parsons, T. R. (1968). A practical handbook of seawater analysis. Ottawa: Fisheries Research Board of Canada Bulletin, 167. 311 pp.Google Scholar
  52. Subhash, N., & Mohanan, C. N. (1997). Curve fit analysis of chlorophyll fluorescence spectra: application to nutrient stress detection in sunflower. Remote Sensing of Environment, 60, 347–356.CrossRefGoogle Scholar
  53. Sunda, W. G. (1989). Trace metal interactions with marine phytoplankton. Biological Oceanography, 6(5–6), 411–442.Google Scholar
  54. Sunda, W. G., & Huntsman, S. A. (1998). Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Science of the Total Environment, 219(2–3), 165–181.CrossRefGoogle Scholar
  55. Thomas, W. H., Hollibaugh, J. T., Seibert, D. L. R., & Wallace, G. T., Jr. (1980). Toxicity of a mixture of ten metals to phytoplankton. Marine Ecology Progress Series, 2, 213–220.CrossRefGoogle Scholar
  56. Torres, E., Cid, A., Fidalgo, P., Herrero, C., & Abalde, J. (1997). Long-chain class III metallothioneins as a mechanism of cadmium tolerance in the marine diatom Phaeodactylum tricornutum Bohlin. Aquatic Toxicology, 39, 231–246.CrossRefGoogle Scholar
  57. Tortell, P. D., & Price, N. M. (1996). Cadmium toxicity and zinc limitation in centric diatoms of the genus Thalassiosira. Marine Ecology Progress Series, 138, 245–254.CrossRefGoogle Scholar
  58. Vieira, S., Utkin, A. B., Lavrov, A., Santos, N. M., Vilar, R., Marques da Silva, J., & Cartaxana, P. (2011). Effects of intertidal microphytobenthos migration on biomass determination via laser-induced fluorescence. Marine Ecology Progress Series, 432, 45–52.CrossRefGoogle Scholar
  59. Watanabe, T., Machida, K., Suzuki, H., Kobayashi, M., & Honda, K. (1985). Photoelectrochemistry of metallochlorophylls. Coordination Chemistry Reviews, 64, 207–224.CrossRefGoogle Scholar
  60. Wollman, F. A. (2001). State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO Journal, 20(14), 3623–3630.CrossRefGoogle Scholar
  61. Zhang, H., & Davison, W. (1995). Performance characteristics of diffusion gradients in thin-film for the in situ measurement of trace-metalin aqueous solution. Analytical Chemistry, 67, 3391–3400.CrossRefGoogle Scholar
  62. Zhang, H., & Davison, W. (1999). Diffusional characteristics of hydrogels used in DGT and DET techniques. Analytica Chimica Acta, 398, 329–340.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maria Teresa Cabrita
    • 1
  • Carla Gameiro
    • 2
  • Andrei B. Utkin
    • 3
    • 4
  • Bernardo Duarte
    • 2
  • Isabel Caçador
    • 2
  • Paulo Cartaxana
    • 5
  1. 1.Instituto Português do Mar e da Atmosfera (IPMA)LisbonPortugal
  2. 2.Centro de Ciências do Mar e Ambiente (MARE)Faculdade de Ciências da Universidade de LisboaLisbonPortugal
  3. 3.INOV-INESCLisboaPortugal
  4. 4.ICEMS, IST, Universidade Técnica de LisboaLisbonPortugal
  5. 5.Marine Biological Section, Department of BiologyUniversity of CopenhagenHelsingørDenmark

Personalised recommendations