Inorganic and organic contaminants in Alaskan shorebird eggs

  • David T. Saalfeld
  • Angela C. Matz
  • Brian J. McCaffery
  • Oscar W. Johnson
  • Phil Bruner
  • Richard B. Lanctot


Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are relatively free of most contaminants and that contaminant concentrations are below levels (except potentially strontium) that would likely affect the survival of individuals and consequently regulate the species at the population level.


Shorebirds Mercury Organochlorines Strontium Prince William Sound Arctic 



We are grateful to the many biologists across Alaska who provided samples for this study, including S. Brown, S. Connors, S. Dieni, M. Greenlee, R. Hunnewell, J. Johnson, M. Johnson, J. Juillerat, D. Kainai, S. Kendall, G. Norwood, D. Payer, D. Ruthrauff, K. Sowl, M. Spies, K. Sullivan, C. Villa, and B. Winn. Samples were collected under the USFWS federal permit MB026962-0 (2002) and MB085371-3 (2004) and the State of Alaska scientific permit 02-021 and 04-062. Funding was provided by the US Fish and Wildlife Service Avian Health and Disease Program and the Region 7 Migratory Bird Management and Ecological Services divisions. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Fish and Wildlife Service. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the US Fish and Wildlife Service.


  1. Adams, W. J., Brix, K. V., Edwards, M., Tear, L. M., DeForest, D. K., & Fairbrother, A. (2003). Analysis of field and laboratory data to derive selenium toxicity thresholds for birds. Environmental Toxicology and Chemistry, 22(9), 2020–2029.CrossRefGoogle Scholar
  2. Ambrose, R. E., Matz, A. C., Swem, T., & Bente, P. (2000). Environmental contaminants in American and arctic peregrine falcon eggs in Alaska, 1979–95. (pp. 67 ). Fairbanks, AK: U.S. Fish and Wildlife Service Technical Report NAES-TR-00-02.Google Scholar
  3. Andres, B. A., Johnson, J. A., Brown, S. C., & Lanctot, R. B. (2012a). Shorebirds breed at high densities in the Teshekpuk Lake Special Area, Alaska. Arctic, 65, 411–420.CrossRefGoogle Scholar
  4. Andres, B. A., Smith, P. A., Morrison, R. I. G., Gratto-Trevor, C. L., Brown, S. C., & Friis, C. A. (2012b). Population estimates of North American shorebirds, 2012. Wader Study Group Bulletin, 119(3), 178–194.Google Scholar
  5. Arctic Monitoring and Assessment Programme. (2011). AMAP assessment 2011: mercury in the Arctic. Norway: Oslo.Google Scholar
  6. Ayusa, R. A., Kelley, K. D., Leach, D. L., Young, L. E., Slack, J. F., Wandless, J. F., Lyon, A. M., & Dillingham, J. L. (2004). Origin of the red dog Zn-Pb-Ag deposits, Brooks Range, Alaska: evidence from regional Pb and Sr isotope sources. Economic Geology, 99(7), 1533–1553.Google Scholar
  7. Barrie, L. A., Gregor, D., Hargrave, B., Lake, R., Muir, D., Shearer, R., Tracey, B., & Bidleman, T. (1992). Arctic contaminants: source, occurrence and pathways. Science of the Total Environment, 122, 1–74.CrossRefGoogle Scholar
  8. Bart, J., Brown, S., Harrington, B., & Morrison, R. I. G. (2007). Survey trends of North American shorebirds: population declines or shifting distributions? Journal of Avian Biology, 38, 73–82.CrossRefGoogle Scholar
  9. Bart, J., & Johnston, V. (2012). Arctic shorebirds in North America: a decade of monitoring. Studies in Avian Biology, 44 Google Scholar
  10. Becker, P. H. (1992). Egg mercury levels decline with the laying sequence in Charadriiformes. Environmental Contamination and Toxicology, 48, 762–767.Google Scholar
  11. Blum, J. D., Taliaferro, E. H., Weisse, M. T., & Holmes, R. T. (2000). Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between trophic levels in two forest ecosystems in the northeastern U.S.A. Biogeochemistry, 49, 87–101.CrossRefGoogle Scholar
  12. Blus, L. J. (1996). DDT, DDD, and DDE in birds. In W. N. Beyer, G. H. Heinz, & A. W. Redmond-Norwood (Eds.), Environmental contaminants in Wildlife: interpreting tissue concentrations. Clemson, South Carolina: Society of Environmental Toxicology and Chemistry.Google Scholar
  13. Braune, B. M., & Noble, D. G. (2009). Environmental contaminants in Canadian shorebirds. Environmental Monitoring and Assessment, 148, 185–204.CrossRefGoogle Scholar
  14. Braune, B. M., Outridge, P. M., Fisk, A. T., Muir, D. C. G., Helm, P. A., Hobbs, K., Hoekstra, P. F., Kuzyk, Z. A., Kwan, M., Letcher, R. J., Lockhart, W. L., Norstrom, R. J., Stern, G. A., & Stirling, I. (2005). Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: an overview of spatial and temporal trends. Science of the Total Environment, 351–352, 4–56.CrossRefGoogle Scholar
  15. Brown, S., Bart, J., Lanctot, R. B., Johnson, J., Kendall, S., Payer, D., & Johnson, J. (2007). Shorebird abundance and distribution on the Arctic National Wildlife Refuge Coastal Plain. Condor, 109, 1–14.CrossRefGoogle Scholar
  16. Brown, S., Hickey, C., Harrington, B., & Gill., R. E. Jr. (2001). United States Shorebird Conservation Plan, 2nd ed. Manomet Center for Conservation Sciences. Manomet, MA: Manomet Center for Conservation SciencesGoogle Scholar
  17. Burger, J. (2008). Assessment and management of risk to wildlife from cadmium. Science of the Total Environment, 389, 37–45.CrossRefGoogle Scholar
  18. Burger, J., & Gochfeld, M. (1993). Lead and cadmium accumulation in eggs and fledgling seabirds in the New York Bight. Environmental Toxicology and Chemistry, 12, 261–267.CrossRefGoogle Scholar
  19. Burger, J., Gochfeld, M., Jeitner, C., Snigaroff, R., Snigaroff, D., Stamm, T., & Volz, C. (2008). Assessment of metals in down feathers of female common eiders and their eggs from the Aleutians: arsenic, cadmium, chromium, lead, manganese, mercury, and selenium. Environmental Monitoring and Assessment, 143, 247–256.CrossRefGoogle Scholar
  20. Clotfelter, E. D., Bell, A. M., & Levering, K. R. (2004). The role of animal behaviour in the study of endocrine-disrupting chemicals. Animal Behaviour, 68, 665–676.CrossRefGoogle Scholar
  21. Custer, T. W., Custer, C. M., & Gray, B. R. (2010). Polychlorinated biphenyls, dioxins, furans, and organochlorine pesticides in spotted sandpiper eggs from the upper Hudson River basin, New York. Ecotoxicology, 19, 391–404.CrossRefGoogle Scholar
  22. Custer, T. W., & Myers, J. P. (1990). Organochlorines, mercury, and selenium in wintering shorebirds from Washington and California. California Fish and Game, 76, 118–125.Google Scholar
  23. De Luca-Abbott, S. B., Wong, B. S. F., Peakall, D. B., Lam, P. K. S., Young, L., Lam, M. H. W., & Richardson, B. J. (2001). Review of effects of water pollution on the breeding success of waterbirds, with particular reference to Ardeids in Hong Kong. Ecotoxicology, 10, 327–349.CrossRefGoogle Scholar
  24. Dietz, R., Sonne, C., Basu, N., Braune, B., O'Hara, T., Letcher, R. J., Scheuhammer, T., Andersen, M., Andreasen, C., Andriashek, D., Asmund, G., Aubail, A., Baagoe, H., Born, E. W., Chan, H. M., Derocher, A. E., Grandjean, P., Knott, K., Kirkegaard, M., Krey, A., Lunn, N., Messier, F., Obbard, M., Olsen, M. T., Ostertag, S., Peacock, E., Renzoni, A., Riget, F. F., Skaare, J. U., Stern, G., Stirling, I., Taylor, M., Wiig, O., Wilson, S., & Aars, J. (2013). What are the toxicological effects of mercury in Arctic biota? Science of the Total Environment, 443, 775–790.CrossRefGoogle Scholar
  25. Fair, J. M., McEwen, L. C., & Kennedy, P. L. (1994). Organochlorine residues in nesting Killdeer, Charadrius vociferus, and their eggs in North Dakota. Canadian Field Naturalist, 108, 328–331.Google Scholar
  26. Fisk, A. T., de Wit, C. A., Wayland, M., Kuzyk, Z. Z., Burgess, N., Letcher, R., Braune, B., Norstrom, R., Blum, S. P., Sandau, C., Lie, E., Larsen, H. J., Skaare, J., & Muir, D. (2005). An assessment of the toxicological significance of anthropogenic contaminants in Canadian arctic wildlife. Science of the Total Environment, 351–352, 57–93.CrossRefGoogle Scholar
  27. Ford, J., Lander, D., Kugler, D., Lasorsa, B., Allen-Gil, S., Crecelius, E., & Martinson, J. (1995). Inorganic contaminants in Arctic Alaskan ecosystems: long-range atmospheric transport or local point sources? Science of the Total Environment, 160–161, 323–335.CrossRefGoogle Scholar
  28. Goede, A. A. (1993). Selenium in eggs and parental blood of a Dutch marine wader. Environmental Contamination and Toxicology, 25, 79–84.Google Scholar
  29. Goede, A. A., & Wolterbeek, H. T. (1994). Have high selenium concentrations in wading birds their origin in mercury? Science of the Total Environment, 144, 247–253.CrossRefGoogle Scholar
  30. Gregor, D. J., & Gummer, W. D. (1989). Evidence of atmospheric transport and deposition of organochlorine pesticides and polychlorinated biphenyls in Canadian Arctic snow. Environmental Science and Technology, 23, 561–565.CrossRefGoogle Scholar
  31. Harding, L. E., Graham, M., & Paton, D. (2005). Accumulation of selenium and lack of severe effects on productivity of American dippers (Cinclus mexicanus) and spotted sandpipers (Actitis macularia). Environmental Contamination and Toxicology, 48, 414–423.CrossRefGoogle Scholar
  32. Hargreaves, A. L., Whiteside, D. P., & Gilchrist, G. (2010). Concentrations of 17 elements, including mercury, and their relationship to fitness measures in Arctic shorebirds and their eggs. Science of the Total Environment, 408, 3153–3161.CrossRefGoogle Scholar
  33. Hargreaves, A. L., Whiteside, D. P., & Gilchrist, G. (2011). Concentrations of 17 elements, including mercury, in the tissues, food and abiotic environment of Arctic shorebirds. Science of the Total Environment, 409, 3757–3770.CrossRefGoogle Scholar
  34. Heinz, G. H., Hoffman, D. J., & Gold, L. G. (1989). Impaired reproduction of mallards fed an organic form of selenium. Journal of Wildlife Management, 53(2), 418–428.CrossRefGoogle Scholar
  35. Henny, C. J., Blus, L. J., & Prouty, R. M. (1982). Organochlorine residues and shell thinning in Oregon seabird eggs. The Murrelet, 63, 15–21.CrossRefGoogle Scholar
  36. Hoffman, P. J., Rice, C. P., & Kubiak, T. J. (1996). PCBs and dioxins in birds. In W. N. Beyer, G. H. Heinz, & A. W. Redmond-Norwood (Eds.), Environmental contaminants in wildlife: interpreting tissue concentrations. Society of Environmental Toxicology and Chemistry: Clemson, South Carolina.Google Scholar
  37. Hothem, R. L., Crayon, J. J., & Law, M. A. (2006). Effects of contaminants on reproductive success of aquatic birds nesting at Edwards Air Force Base, California. Environmental Contamination and Toxicology, 51, 711–719.CrossRefGoogle Scholar
  38. Hothem, R. L., & Powell, A. N. (2000). Contaminants in eggs of Western Snowy Plovers and California Least Terns: is there a link to population decline? Environmental Contamination and Toxicology, 65, 42–50.CrossRefGoogle Scholar
  39. Hutton, M. (1987). Cadmium. In T. C. Hutchinson & K. M. Meema (Eds.), Lead, mercury, cadmium and arsenic in the environment (pp. 35–42). Chichester, UK: Wiley.Google Scholar
  40. International Wader Study Group. (2003). Waders are declining world-wide. Conclusions from the 2003 International Wader Study Group Conference, Cádiz, Spain. Wader Study Group Bulletin, 101(102), 8–12.Google Scholar
  41. Kanayama, S., Yabuki, S., Yanagisawa, F., & Motoyama, R. (2002). The chemical and strontium isotope composition of atmospheric aerosols over Japan: the contribution of long-range-transported Asian dust (Kosa). Atmospheric Environment, 36, 5159–5175.CrossRefGoogle Scholar
  42. Khan, M. A. K., & Wang, F. (2009). Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environmental Toxicology and Chemistry, 28(8), 1567–1577.CrossRefGoogle Scholar
  43. Klaassen, M., Lindström, Å., Meltofte, H., & Piersma, T. (2001). Arctic waders are not capital breeders. Nature, 413, 794.CrossRefGoogle Scholar
  44. Macdonald, R. W., Barrie, L. A., Bidleman, T. F., Diamond, M. L., Gregor, D. J., Semkin, R. G., Strachan, W. M. J., Li, Y. F., Wania, F., Alaee, M., Alexeeva, L. B., Backus, S. M., Bailey, R., Bewers, J. M., Gobeil, C., Halsall, C. J., Harner, T., Hoff, J. T., Jantunen, L. M. M., Lockhart, W. L., Mackay, D., Muir, D. C. G., Pudykiewicz, J., Reimer, K. J., Smith, J. N., Stern, G. A., Schroeder, W. H., Wagemann, R., & Yunker, M. B. (2000). Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Science of the Total Environment, 254, 93–234.CrossRefGoogle Scholar
  45. Mattig, F., Rosner, H., Giessing, L., & Becker, P. (2000). Environmental chemicals in eggs of Dunlins (Calidris alpina) from Northern Norway compared to eggs of coastal bird species breeding in the Wadden Sea. Journal für Ornithologie, 141, 361–369.CrossRefGoogle Scholar
  46. Matz, A. C., & Rocque, D. A. (2007). Contaminants in Lesser Scaup eggs and blood from Yukon Flats National Wildlife Refuge, Alaska. Condor, 109, 852–861.CrossRefGoogle Scholar
  47. Mora, M. A. (2003). Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona. Environmental Pollution, 125, 393–400.CrossRefGoogle Scholar
  48. Mora, M. A., Taylor, R. J., & Brattin, B. L. (2007). Potential ecotoxicological significance of elevated concentrations of strontium in eggshells of passerine birds. Condor, 109, 199–205.CrossRefGoogle Scholar
  49. Morrison, R. I. G., Aubry, Y., Butler, R. W., Beyersbergen, G. W., Donaldson, G. M., Gratto-Trevor, C. L., Hicklin, P. W., Johnston, V. H., & Ross, R. K. (2001). Declines in North American shorebird populations. Wader Study Group Bulletin, 94, 34–38.Google Scholar
  50. Morrison, R. I. G., Downes, C., & Collins, B. (1994). Population trends of shorebirds on fall migration in eastern Canada 1974–1991. Wilson Bulletin, 106, 431–447.Google Scholar
  51. Morrison, R. I. G., & Hobson, K. A. (2004). Use of body stores in shorebirds after arrival on high-arctic breeding grounds. Auk, 121(2), 333–344.CrossRefGoogle Scholar
  52. Morrison, R. I. G., McCaffery, B. J., Gill, R. E., Jr., Skagen, S. K., Jones, S. L., Page, G. W., Gratto-Trevor, C. L., & Andres, B. A. (2006). Population estimates of North American shorebirds, 2006. Wader Study Group Bulletin, 111, 67–85.Google Scholar
  53. Morrison, R. I. G., Gill, R. E., Jr., Harrington, B. A., Skagen, S., Page, G. W., Gratto-Trevor, C. L., & Haig, S. M. (2000). Population estimates of Nearctic shorebirds. Waterbirds, 23(3), 337–352.CrossRefGoogle Scholar
  54. Morrissey, C. A., Albert, C. A., Dods, P. L., Cullen, W. R., Lai, V. M., & Elliott, J. E. (2007). Arsenic accumulation in bark beetles and forest birds occupying mountain pine beetle infested stands with monosodium methanearsonate. Environmental Science and Technology, 41, 1494–1500.CrossRefGoogle Scholar
  55. Neff, J. M. (1997). Ecotoxicology of arsenic in the marine environment. Environmental Toxicology and Chemistry, 16(5), 917–927.Google Scholar
  56. Ohlendorf, H. M., Hoffman, D. J., Saiki, M. K., & Aldrich, T. W. (1986). Embryonic mortality and abnormalities of aquatic birds: apparent impacts of selenium from irrigation drainwater. Science of the Total Environment, 52, 49–63.CrossRefGoogle Scholar
  57. Peakall, D. B. (1996). Dieldrin and other cyclodiene pesticides in wildlife. In W. N. Beyer, G. H. Heinz, & A. W. Redmond-Norwood (Eds.), Environmental contaminants in wildlife: interpreting tissue concentrations. Society of Environmental Toxicology and Chemistry: Clemson, South Carolina.Google Scholar
  58. Rattner, B. A., Hoffman, D. J., Melancon, M. J., Olsen, G. H., Schmidt, S. R., & Parsons, K. C. (2000). Organochlorine and metal contaminant exposure and effects in hatching Black-Crowned Night Herons (Nycticorax nycticorax) in Delaware Bay. Environmental Contamination and Toxicology, 39, 38–45.CrossRefGoogle Scholar
  59. Roodbergen, M., Klok, C., & van Hout, A. (2008). Transfer of heavy metals in the food chain earthworm black-tailed godwit (Limosa limosa): comparison of a polluted and a reference site in the Netherlands. Science of the Total Environment, 406, 407–412.CrossRefGoogle Scholar
  60. Scheuhammer, A. M. (1987). The chronic toxicity of aluminum, cadmium, mercury, and lead in birds: a review. Environmental Pollution, 46, 263–295.CrossRefGoogle Scholar
  61. Scheuhammer, A. M., Perrault, J. A., & Bond, D. E. (2001). Mercury, methylmercury, and selenium concentrations in eggs of common loons (Gavia immer) from Canada. Environmental Monitoring and Assessment, 72, 79–94.CrossRefGoogle Scholar
  62. Schwarzbach, S. E., Stephenson, M., Ruhlen, T., Abbott, S., Page, G., & Adams, D. (2005). Elevated mercury concentrations in failed eggs of Snowy Plovers at Point Reyes National Seashore. Marine Pollution Bulletin, 50, 1433–1456.CrossRefGoogle Scholar
  63. Sutherland, W. J., Alves, J. A., Amano, T., Chang, C. H., Davidson, N. C., Finlayson, C. M., Gill, J. A., Gill, R. E., Jr., González, P. M., Gunnarsson, T. G., Kleijn, D., Spray, C. J., Székely, T., & Thompson, D. B. A. (2012). A horizon scanning assessment of current and potential future threats to migratory shorebirds. Ibis, 154(4), 663–679.CrossRefGoogle Scholar
  64. Tavares, P. C., Monteiro, L. R., Lopes, R. J., Santos, M. M. C., & Furness, R. W. (2004). Intraspecific variation of mercury contamination in chicks of black-winged stilt (Himantopus himantopus) in coastal wetlands from southwestern Europe. Environmental Contamination and Toxicology, 72, 437–444.CrossRefGoogle Scholar
  65. Tessler, D. F., Johnson, J. A., Andres, B. A., Thomas, S., & Lanctot, R. (2007). Black Oystercatcher (Haematopus bachmani) conservation action plan. International Black Oystercatcher Working Group, Alaska Department of Fish and Game. (pp. 115). Anchorage, Alaska: U.S. Fish and Wildlife Service and Manomet Center for Conservation Sciences.Google Scholar
  66. Wang, W. X. (2002). Interactions of trace metals and different marine food chains. Marine Ecology Progress Series, 243, 295–309.CrossRefGoogle Scholar
  67. White, D. H., King, K. A., & Prouty, R. M. (1980). Significance of organochlorine and heavy metal residues in wintering shorebirds at Corpus Christi, Texas, 1976–77. Pesticides Monitoring Journal, 14, 58–63.Google Scholar
  68. White, D. H., Mitchell, C. A., & Kaiser, T. E. (1983). Temporal accumulation of organochlorine pesticides in shorebirds wintering on the south Texas coast, 1979–80. Environmental Contamination and Toxicology, 12, 241–245.CrossRefGoogle Scholar
  69. Wiemeyer, S. N. (1996). Other organochlorine pesticides in wildlife. In W. N. Beyer, G. H. Heinz, & A. W. Redmond-Norwood (Eds.), Environmental contaminants in wildlife: interpreting tissue concentrations. Society of Environmental Toxicology and Chemistry: Clemson, South Carolina.Google Scholar
  70. Wolfe, M. F., Schwarzbach, S., & Sulaiman, R. A. (1998). Effects of mercury on wildlife: a comprehensive review. Environmental Toxicology and Chemistry, 17(2), 146–160.CrossRefGoogle Scholar
  71. Yohannes, E., Valcu, M., Lee, R. W., & Kempenaers, B. (2010). Resource use for reproduction depends on spring arrival time and wintering area in an arctic breeding shorebird. Journal of Avian Biology, 41, 580–590.CrossRefGoogle Scholar
  72. Zöckler, C., Delany, S., & Hagemeijer, W. (2003). Wader populations are declining—how will we elucidate the reasons? Wader Study Group Bulletin, 100, 202–211.Google Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2016

Authors and Affiliations

  • David T. Saalfeld
    • 1
    • 6
  • Angela C. Matz
    • 2
  • Brian J. McCaffery
    • 3
  • Oscar W. Johnson
    • 4
  • Phil Bruner
    • 5
  • Richard B. Lanctot
    • 1
  1. 1.US Fish and Wildlife Service, Migratory Bird Management DivisionAnchorageUSA
  2. 2.US Fish and Wildlife ServiceFairbanks Fish and Wildlife Field OfficeFairbanksUSA
  3. 3.US Fish and Wildlife Service, Yukon Delta National Wildlife RefugeBethelUSA
  4. 4.Department of EcologyMontana State UniversityBozemanUSA
  5. 5.Brigham Young University HawaiiLaieUSA
  6. 6.Alaska Department of Fish and GameAnchorageUSA

Personalised recommendations