Regional-scale fluxes of zinc, copper, and nickel into and out of the agricultural soils of the Kermanshah province in western Iran



It is important to study the status and trend of soil contamination with trace elements to make sustainable management strategies for agricultural soils. This study was conducted in order to model zinc (Zn), copper (Cu), and nickel (Ni) accumulation rates in agricultural soils of Kermanshah province using input and output fluxes mass balance and to evaluate the associated uncertainties. The input and output fluxes of Zn, Cu, and Ni into (from) the agricultural soils of Kermanshah province via livestock manure, mineral fertilizers, municipal waste compost, pesticides, atmospheric deposition, and crop removal were assessed for the period 2000–2014. The data were collected to compute the fluxes at both township and regional scales from available databases such as regional agricultural statistics. The basic units of the balance were 9 townships of Kermanshah province. Averaged over the entire study region, the estimated net fluxes of Zn, Cu, and Ni into agricultural soils were 341, 84, and131 g ha year−1, with a range of 211 to 1621, 61 to 463, and 114 to 679 among the townships. The livestock manure was responsible for 55, 56, and 67 % of the total Zn, Cu, and Ni inputs at regional scale, while municipal waste compost and mineral fertilizers accounted for approximately 19, 38, and 15 % and 24, 4, and 14 % of the total Zn, Cu, and Ni inputs, respectively. Atmospheric deposition was a considerable source only for Ni and at township scale (7–29 % of total Ni input). For Zn, Cu, and Ni, the input-to-output ratio of the fluxes ranged from 1.8 to 48.9, 2 to 48.2, and 4 to 303 among townships and averaged 2.8, 3, and 9 for the entire study area, respectively. Considering that outputs other than with crop harvests are minor, this means that Zn, Cu, and Ni (in particular Ni) stocks are rapidly building up in soils of some parts of the study region. Uncertainties in the livestock manure and crop removal data were the main sources of estimation uncertainty in this study. This study provides the basic information to develop policies for controlling the trace elements inputs into agricultural soils of the study area.


Mass flux assessment Agricultural soil Trace elements Atmospheric deposition Estimation uncertainty 


  1. Adriano, D. C. (2001). Trace elements in terrestrial environments. Biogeochemistry, bioavailability, and risks of metals (2nd ed.). New York: Springer Verlag.CrossRefGoogle Scholar
  2. Afyuni, M., Khoshgoftarmanesh, A. H., Dorostkar, V., & Moshiri, R. (2007). Zinc and Cadmium content in fertilizers commonly used in Iran (pp. 24–28). Istanbul: International Conference of Zinc Crops.Google Scholar
  3. Andersson, A. (1992). Trace elements in agricultural soils-fluxes, balances and background values. Report 4077. Uppsala: Swedish Environmental Protection Agency.Google Scholar
  4. Bassanino, M., Sacco, D., Zavattaro, L., & Grignani, C. (2011). Nutrient balance as a sustainability indicator of different agro-environments in Italy. Ecological Indicators, 11(2), 715–723. doi:10.1016/j.ecolind.2010.05.005.CrossRefGoogle Scholar
  5. Belon, E., Boisson, M., Deportes, I. Z., Eglin, T. K., Feix, I., Bispo, A. O., & Guellier, C. R. (2012). An inventory of trace elements inputs to French agricultural soils. Science of the Total Environment, 439, 87–95. doi:10.1016/j.scitotenv.2012.09.011.CrossRefGoogle Scholar
  6. Bengtsson, H., Öborn, I., Jonsson, S., Nilsson, I., & Andersson, A. (2003). Field balances of some mineral nutrients and trace elements in organic and conventional dairy farming-a case study at Öjebyn, Sweden. European Journal of Agronomy, 20(1), 101–116. doi:10.1016/S1161-0301(03)00079-0.CrossRefGoogle Scholar
  7. Bengtsson, H., Alvenäs, G., Nilsson, S. I., Hultman, B., & Öborn, I. (2006). Cadmium, copper and zinc leaching and surface run-off losses at the Öjebyn farm in Northern Sweden-temporal and spatial variation. Agriculture, Ecosystems and Environment, 113(1), 120–138. doi:10.1016/j.agee.2005.09.001.CrossRefGoogle Scholar
  8. Chianu, J. N., Chianu, J. N., & Mairura, F. (2012). Mineral fertilizers in the farming systems of sub-Saharan Africa. A review. Agronomy for Sustainable Development, 32(2), 545–566. doi:10.1007/s13593-011-0050-0.CrossRefGoogle Scholar
  9. Cobo, J. G., Dercon, G., & Cadisch, G. (2010). Nutrient balances in African land use systems across different spatial scales: a review of approaches, challenges and progress. Agriculture, Ecosystems and Environment, 136(1), 1–15. doi:10.1016/j.agee.2009.11.006.CrossRefGoogle Scholar
  10. Dach, J., & Jakubus, M. (2001). National report from Poland. In H. Eckel, H. Dohler, & U. Roth (Eds.), Assessment and Reduction of Heavy Metal Input into Agro-Ecosystems (AROMIS) (pp. 177–187). Darmstadt: EU Concerted Action QLK5-2000-00670, Kuratorium fur Technik und Bauwesen in der Landwirtschaft.Google Scholar
  11. Dach, J., & Starmans, D. (2005). Heavy metals balance in Polish and Dutch agronomy: actual state and previsions for the future. Agriculture, Ecosystems and Environment, 107(4), 309–316. doi:10.1016/j.agee.2005.02.017.CrossRefGoogle Scholar
  12. De Vries, W., & Bakker, D. J. (1998). Manual for calculating critical loads of heavy metals for terrestrial ecosystems; guidelines for critical limits, calculation methods and input data. Report 166. Wageningen: DLO Winand Staring Centre.Google Scholar
  13. Dolan, D. M., & Bierman, V. J. (1982). Mass balance modeling of heavy metals in Saginaw Bay, Lake Huron. Journal of Great Lakes Research, 8(4), 76–694. doi:10.1016/S0380-1330(82)72008-8.CrossRefGoogle Scholar
  14. Gilbert, A. (1996). Criteria for sustainability in the development of indicators for sustainable development. Chemosphere, 33(9), 1739–1748. doi:10.1016/0045-6535(96)00190-7.CrossRefGoogle Scholar
  15. Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 30(10), 1389–1414. doi:10.1016/S0038-0717(97)00270-8.CrossRefGoogle Scholar
  16. Giller, K. E., Witter, E., & McGrath, S. P. (1999). Assessing risks of heavy metal toxicity in agricultural soils: do microbes matter? Human and Ecological Risk Assessment: An International Journal, 5(4), 683–689. doi:10.1080/10807039.1999.9657732.CrossRefGoogle Scholar
  17. Gustafson, G. M., Salomon, E., & Jonsson, S. (2007). Barn balance calculations of Ca, Cu, K, Mg, Mn, N, P, S and Zn in a conventional and organic dairy farm in Sweden. Agriculture, Ecosystems and Environment, 119(1), 160–170. doi:10.1016/j.agee.2006.07.003.CrossRefGoogle Scholar
  18. Horne, A. J., & Goldman, C. R. (1974). Suppression of nitrogen fixation by blue-green algae in a eutrophic lake with trace additions of copper. Science, 183(4123), 409–411. doi:10.1126/science.183.4123.409.CrossRefGoogle Scholar
  19. IRIMO. (2013). Islamic Republic of Iran Meteorological Organization. Available at:
  20. Jones, J. B., Jr. (2001). Laboratory guide for conducting soil tests and plant analysis (pp. 27–160). Boca Raton: CRC press.Google Scholar
  21. Karami, M., Amini, M., Afyuni, M., Khoshgoftarmanesh, A. H., Keller, A., Abdi, A., & Schulin, R. (2014). Agricultural zinc fluxes into soils and crops of central Iran at regional scale. Archives of Agronomy and Soil Science, 60(3), 437–456. doi:10.1080/03650340.2013.794936.CrossRefGoogle Scholar
  22. Karimi, N., Ghaderian, S. M., Maroofi, H., & Schat, H. (2009). Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran, Iran. International Journal of Phytoremediation, 12(2), 159–173. doi:10.1080/15226510903213977.CrossRefGoogle Scholar
  23. Keller, T., & Desaules, A. (1999). Schadstoffgehalte und Orientierungswerte in Böden der Schweiz 1990 bis 1996. Umweltmaterialien. Bern: Federal Office of Environment, Forests and Landscape (FOEFL).Google Scholar
  24. Keller, A., & Schulin, R. (2003). Modelling heavy metal and phosphorus balances for farming systems. Nutrient Cycling in Agroecosystems, 66(3), 271–284. doi:10.1023/A:1024410126924.CrossRefGoogle Scholar
  25. Keller, A., Von Steiger, B., Van der Zee, S. E. A. T. M., & Schulin, R. (2001). A stochastic empirical model for regional heavy-metal balances in agroecosystems. Journal of Environmental Quality, 30(6), 1976–1989. doi:10.2134/jeq2001.1976.CrossRefGoogle Scholar
  26. Keller, A., Abbaspour, K. C., & Schulin, R. (2002). Assessment of uncertainty and risk in modeling regional heavy-metal accumulation in agricultural soils. Journal of Environmental Quality, 31(1), 175–187. doi:10.2134/jeq2002.1750.CrossRefGoogle Scholar
  27. KRCC (2013). Kermanshah Recycling and Composting Company. Kermanshah, Iran, Available at:
  28. Luo, L., Ma, Y., Zhang, S., Wei, D., & Zhu, Y. G. (2009). An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 90(8), 2524–2530. doi:10.1016/j.jenvman.2009.01.011.CrossRefGoogle Scholar
  29. Moolenaar, S. W. (1998). Sustainable management of heavy metals in agro-ecosystems. Landbouwuniversiteit Wageningen.Google Scholar
  30. Moolenaar, S. W., & Lexmond, T. M. (1998). Heavy-metal balances of agro-ecosystems in the Netherlands. NJAS Wageningen Journal of Life Sciences, 46(2), 171–192.Google Scholar
  31. Moolenaar, S. W., Van Der Zee, S. E., & Lexmond, T. M. (1997). Indicators of the sustainability of heavy-metal management in agro-ecosystems. Science of the Total Environment, 201(2), 155–169. doi:10.1016/S0048-9697(97)00123-X.CrossRefGoogle Scholar
  32. Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton‐Smith, C., & Chambers, B. J. (2006). Quantifying heavy metal inputs to agricultural soils in England and Wales. Water and Environment Journal, 20(2), 87–95. doi:10.1111/j.1747-6593.2006.00026.x.CrossRefGoogle Scholar
  33. Öborn, I., Edwards, A. C., Witter, E., Oenema, O., Ivarsson, K., Withers, P. J. A., & Stinzing, A. R. (2003). Element balances as a tool for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context. European Journal of Agronomy, 20(1), 211–225. doi:10.1016/S1161-0301(03)00080-7.CrossRefGoogle Scholar
  34. Oenema, O., Kros, H., & De Vries, W. (2003). Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. European Journal of Agronomy, 20(1), 3–16. doi:10.1016/S1161-0301(03)00067-4.CrossRefGoogle Scholar
  35. Poulsen, H. D. (1998). Zinc and copper as feed additives. Journal of Animal and Feed Sciences, 7, 135–142.Google Scholar
  36. Schulin, R. (1993). Contaminant mass balances in soil monitoring. In Soil Monitoring (pp. 55-71). Birkhäuser Basel. doi:10.1007/978-3-0348-7542-4_7.
  37. Sheppard, S. C., Grant, C. A., Sheppard, M. I., De Jong, R., & Long, J. (2009). Risk indicator for agricultural inputs of trace elements to Canadian soils. Journal of Environmental Quality, 38(3), 919–932. doi:10.2134/jeq2008.0195.CrossRefGoogle Scholar
  38. Shomar, B. H. (2006). Trace elements in major solid-pesticides used in the Gaza Strip. Chemosphere, 65(5), 898–905. doi:10.1016/j.chemosphere.2006.03.004.CrossRefGoogle Scholar
  39. Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., & Sumner, M. E. (1996). Methods of soil analysis. Part 3-Chemical methods. Soil Science Society of America Inc.Google Scholar
  40. USEPA. (1998). Method 3051A (Microwave assisted acid digestion of sediments, sludge’s, soils and oils). Washington DC: U. S. Environmental Protection Agency. 24 pp.Google Scholar
  41. Von Steiger, B., & Obrist, J. (1993). Available databases for regional mass balances in agricultural land. In Soil Monitoring (pp. 35–46). Birkhäuser Basel. doi:10.1007/978-3-0348-7542-4_4.
  42. Walker, T. W., & Adams, A. F. R. (1985). Studies on soil organic matter: influence of phosphorus content of parent material on accumulation of carbon, nitrogen, sulfur and organic phosphorus in grassland soils. Soil Science, 85(6), 307–318.CrossRefGoogle Scholar
  43. Yeganeh, M. (2012). Modeling accumulation rates of heavy metals in surface soils of Hamadan province and assessing its associated risk for human health. Ph.D. thesis, College of Agriculture, Isfahan University of Technology, Iran (in Persian).Google Scholar
  44. Yeganeh, M., Afyuni, M., Khoshgoftarmanesh, A. H., Khodakarami, L., Amini, M., Soffyanian, A. R., & Schulin, R. (2013). Mapping of human health risks arising from soil nickel and mercury contamination. Journal of Hazardous Materials, 244, 225–239. doi:10.1016/j.jhazmat.2012.11.040.CrossRefGoogle Scholar
  45. Zee, S. V. D., & De Haan, F. A. M. (1998). Monitoring, control and remediation of soil degradation by agrochemicals, sewage sludge and composted municipal wastes. Advances in Geo-Ecology, 31, 607–614.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shahab Ahmadi Doabi
    • 1
  • Mahin Karami
    • 2
  • Majid Afyuni
    • 1
  1. 1.Department of Soil Science, College of AgricultureIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Soil Science, Agricultural Engineering CampusRazi UniversityKermanshahIran

Personalised recommendations