Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives

  • Sveta Thakur
  • Lakhveer SinghEmail author
  • Zularisam Ab Wahid
  • Muhammad Faisal Siddiqui
  • Samson Mekbib Atnaw
  • Mohd Fadhil Md Din


Increasing heavy metal (HM) concentrations in the soil have become a significant problem in the modern industrialized world due to several anthropogenic activities. Heavy metals (HMs) are non-biodegradable and have long biological half lives; thus, once entered in food chain, their concentrations keep on increasing through biomagnification. The increased concentrations of heavy metals ultimately pose threat on human life also. The one captivating solution for this problem is to use green plants for HM removal from soil and render it harmless and reusable. Although this green technology called phytoremediation has many advantages over conventional methods of HM removal from soils, there are also many challenges that need to be addressed before making this technique practically feasible and useful on a large scale. In this review, we discuss the mechanisms of HM uptake, transport, and plant tolerance mechanisms to cope with increased HM concentrations. This review article also comprehensively discusses the advantages, major challenges, and future perspectives of phytoremediation of heavy metals from the soil.


Phytoremediation Metal ion uptake Translocation Tolerance mechanisms 


  1. Ahmad, S. (1995). Antioxidant mechanisms of enzymes and proteins. In S. Ahmad (Ed.), Oxidative stress and antioxidant defenses in biology (pp. 238–272). New York: Chapman and Hall.CrossRefGoogle Scholar
  2. Alia, Mohanty, P., & Matysik, J.(2001). Effect of proline on the production of singlet oxygen. Amino Acids. 21:195–200.Google Scholar
  3. Arshad, M., Saleem, M., & Hussain, S. (2007). Perspectives of bacterial ACC deaminase in phytoremediation. Trends in Biotechnology, 25(8), 356–362.CrossRefGoogle Scholar
  4. Axelsen, K. B., & Palmgren, M. G. (2001). Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiology, 126(2), 696–706.CrossRefGoogle Scholar
  5. Babu, A. G., Kim, J. D., & Oh, B. T. (2013). Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. Journal of hazardous materials, 250, 477–483.CrossRefGoogle Scholar
  6. Barceló, J. U. A. N., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: a review. Journal of Plant Nutrition, 13(1), 1–37.CrossRefGoogle Scholar
  7. Bizily, S. P., Rugh, C. L., & Meagher, R. B. (2000). Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nature Biotechnology, 18(2), 213–217.CrossRefGoogle Scholar
  8. Boominathan, R., & Doran, P. M. (2002). Ni‐induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New phytologist, 156(2), 205–215.Google Scholar
  9. Boominathan, R., & Doran, P. M. (2003). Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnology and Bioengineering, 83(2), 158–167.CrossRefGoogle Scholar
  10. Bourg, A. C. M., & Loch, J. G. (1995). Mobilization of heavy metals as affected by pH and redox conditions. In: Salomons W, Stigliani WM (Eds.) Biogeodynamics of pollutants in soils and sediment. Springer, Berlin, pp 87–102.Google Scholar
  11. Burns, R. G., & Dick, R. P. (Eds.). (2002). Enzymes in the environment: activity, ecology, and applications. Marcel Dekker, New York.Google Scholar
  12. Callahan, D. L., Baker, A. J., Kolev, S. D., & Wedd, A. G. (2006). Metal ion ligands in hyperaccumulating plants. JBIC, Journal of Biological Inorganic Chemistry, 11(1), 2–12.CrossRefGoogle Scholar
  13. Caregnato, F. F., Koller, C. E., MacFarlane, G. R., & Moreira, J. C. F. (2008). The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine Pollution Bulletin, 56, 1119–1127.CrossRefGoogle Scholar
  14. Chaney, R. L. (1983). Plant uptake of inorganic waste constituents. In J. F. Parr, P. B. Marsh, & J. M. Kla (Eds.), Land treatment of hazardous wastes (pp. 50–76). Park Ridge: Noyes Data Corporation.Google Scholar
  15. Chen, X. Z., Peng, J. B., Cohen, A., Nelson, H., Nelson, N., & Hediger, M. A. (1999). Yeast SMF1 mediates H+−coupled iron uptake with concomitant uncoupled cation currents. Journal of Biological Chemistry, 274(49), 35089–35094.CrossRefGoogle Scholar
  16. Cherian, S., & Oliveira, M. M. (2005). Transgenic plants in phytoremediation: recent advances and new possibilities. Environmental science & technology, 39(24), 9377–9390.CrossRefGoogle Scholar
  17. Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212(4), 475–486.CrossRefGoogle Scholar
  18. Clemens, S., Antosiewicz, D. M., Ward, J. M., Schachtman, D. P., & Schroeder, J. I. (1998). The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proceedings of the National Academy of Sciences, 95(20), 12043–12048.CrossRefGoogle Scholar
  19. Costa, G., & Morel, J. L. (1994). Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiology and Biochemistry, 32(4), 561–570.Google Scholar
  20. Cunningham, S. D., & Berti, W. R. (1993). Remediation of contaminated soils with green plants: an overview. In Vitro Cellular & Developmental Biology-Plant, 29(4), 207–212.CrossRefGoogle Scholar
  21. Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110(3), 715.Google Scholar
  22. Cunningham, S. D., Berti, W. R., & Huang, J. W. (1995). Phytoremediation of contaminated soils. Trends in Biotechnology, 13(9), 393–397.CrossRefGoogle Scholar
  23. Dalton, D. A. (1995). Antioxidant defenses of plants and fungi. In Oxidative stress and antioxidant defenses in biology (pp. 298–355). US: Springer.CrossRefGoogle Scholar
  24. Dietz, K. J., Baier, M., & Krämer, U. (1999). Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In  M.N.V. Prasad and J. Hagemeyer (Eds.) Heavy metal stress in plants: From Molecules to Ecosystems, (pp. 73–97). Springer Berlin Heidelberg.Google Scholar
  25. Eapen, S., & D’souza, S. F. (2005). Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances, 23(2), 97–114.CrossRefGoogle Scholar
  26. Eide, D. J. (1998). The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annual Review of Nutrition, 18(1), 441–469.CrossRefGoogle Scholar
  27. Ernst, W. H. O., Verkleij, J. A. C., & Schat, H. (1992). Metal tolerance in plants. Acta Botanica Neerlandica, 41(3), 229–248.CrossRefGoogle Scholar
  28. Farago, M. E., Mahmood, I., & Clark, A. J. (1980). The amino acid content of Hybanthus floribundus, a nickel accumulating plant and the difficulty of detecting nickel amino acid complexes by chromatographic methods. Inorganic and Nuclear Chemistry Letters, 16(8), 481–484.CrossRefGoogle Scholar
  29. Fergusson, J. E. (1990). The heavy metals: chemistry, environmental impact and health effects (pp. 382–388). Oxford: Pergamon Press.Google Scholar
  30. Foyer, C., Rowell, J., & Walker, D. (1983). Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta, 157(3), 239–244.CrossRefGoogle Scholar
  31. Gaither, L. A., & Eide, D. J. (2001). Eukaryotic zinc transporters and their regulation. In Zinc Biochemistry, Physiology, and Homeostasis (pp. 65–84). Netherlands: Springer.CrossRefGoogle Scholar
  32. Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77(3), 229–236.CrossRefGoogle Scholar
  33. Gaxiola, R. A., Fink, G. R., & Hirschi, K. D. (2002). Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiology, 129(3), 967–973.CrossRefGoogle Scholar
  34. Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ, 6(4), 18.Google Scholar
  35. Glass, D. J. (1999). Current market trends in phytoremediation. international. Journal of Phytoremediation, 1(1), 1–8.CrossRefGoogle Scholar
  36. Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology advances, 28(3), 367–374.CrossRefGoogle Scholar
  37. Gratão, P. L., Prasad, M. N. V., Cardoso, P. F., Lea, P. J., & Azevedo, R. A. (2005). Phytoremediation: green technology for the clean up of toxic metals in the environment. Brazilian Journal of Plant Physiology, 17(1), 53–64.CrossRefGoogle Scholar
  38. Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L., & Eide, D. (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences, 95(12), 7220–7224.CrossRefGoogle Scholar
  39. Guerinot, M. L. (2000). The ZIP family of metal transporters. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1465(1), 190–198.CrossRefGoogle Scholar
  40. Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1–11.CrossRefGoogle Scholar
  41. Hall, J. L., & Williams, L. E. (2003). Transition metal transporters in plants. Journal of experimental botany, 54(393), 2601–2613.CrossRefGoogle Scholar
  42. John, D. A., & Leventhal, J. S. (1995). Bioavailability of metals. Preliminary compilation of descriptive geoenvironmental mineral deposit models. In E. du Bray (Ed.) pp. 10–18. USGS, Denver.Google Scholar
  43. Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. International journal of molecular sciences, 13(3), 3145–3175.CrossRefGoogle Scholar
  44. Kaul, S., Sharma, S. S., & Mehta, I. K. (2008). Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids, 34(2), 315–320.CrossRefGoogle Scholar
  45. Kavi Kishor, P. B., Zonglie, H., Miao, G. H., Hu, C. A., & Verma, D. P. S. (1995). Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108(4), 1387–1394.Google Scholar
  46. Kinnersley, A. M. (1993). The role of phytochelates in plant growth and productivity. Plant Growth Regulation, 12(3), 207–218.CrossRefGoogle Scholar
  47. Kotrba, P., Najmanova, J., Macek, T., Ruml, T., & Mackova, M. (2009). Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnology Advances, 27(6), 799–810.CrossRefGoogle Scholar
  48. Krämer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J., & Smith, J. A. C. (1996). Free histidine as a metal chelator in plants that accumulate nickel. Nature, 379, 635–638.Google Scholar
  49. Lasat, M. M. (2000). Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research, 2(5), 1–25.Google Scholar
  50. Lombi, E., Tearall, K. L., Howarth, J. R., Zhao, F. J., Hawkesford, M. J., & McGrath, S. P. (2002). Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiology, 128(4), 1359–1367.CrossRefGoogle Scholar
  51. Ma, J. F., Hiradate, S., & Matsumoto, H. (1998). High aluminum resistance in buckwheat II. Oxalic acid detoxifies aluminum internally. Plant Physiology, 117(3), 753–759.Google Scholar
  52. Ma, Y., Prasad, M. N. V., Rajkumar, M., & Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29(2), 248–258.CrossRefGoogle Scholar
  53. Mari, S., Gendre, D., Pianelli, K., Ouerdane, L., Lobinski, R., Briat, J. F., Lebrun, M., & Czernic, P. (2006). Root-to-shoot long-distance circulation of nicotianamine and nicotianamine–nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany,57(15), 4111–4122.Google Scholar
  54. Martínez, M., Bernal, P., Almela, C., Vélez, D., García-Agustín, P., Serrano, R., & Navarro-Aviñó, J. (2006). An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere, 64(3), 478–485.CrossRefGoogle Scholar
  55. Martinoia, E., Grill, E., Tommasini, R., Kreuz, K., & Amrhein, N. (1993). ATP-dependent glutathione S-conjugate’export’pump in the vacuolar membrane of plants. Nature, 363, 247–249.CrossRefGoogle Scholar
  56. Martinoia, E., Klein, M., Geisler, M., Bovet, L., Forestier, C., Kolukisaoglu, Ü., & Schulz, B. (2002). Multifunctionality of plant ABC transporters–more than just detoxifiers. Planta, 214(3), 345–355.CrossRefGoogle Scholar
  57. Mäser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., & Guerinot, M. L. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126(4), 1646–1667.CrossRefGoogle Scholar
  58. McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14(3), 277–282.CrossRefGoogle Scholar
  59. Memon, A. R., & Schröder, P. (2009). Implications of metal accumulation mechanisms to phytoremediation. Environmental Science and Pollution Research, 16(2), 162–175.CrossRefGoogle Scholar
  60. Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environmental Health Perspectives, 116(3), 278.CrossRefGoogle Scholar
  61. Mills, R. F., Krijger, G. C., Baccarini, P. J., Hall, J. L., & Williams, L. E. (2003). Functional expression of AtHMA4, a P1B‐type ATPase of the Zn/Co/Cd/Pb subclass. The Plant Journal, 35(2), 164–176.CrossRefGoogle Scholar
  62. Navari-Izzo, F., & Quartacci, M. F. (2001). Phytoremediation of metals: tolerance mechanisms against oxidative stress. Minerva Biotecnologica, 13(2), 73.Google Scholar
  63. Olaniran, A. O., Balgobind, A., & Pillay, B. (2013). Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. International journal of molecular sciences, 14(5), 10197–10228.CrossRefGoogle Scholar
  64. Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126.CrossRefGoogle Scholar
  65. Palmgren, M. G., & Harper, J. F. (1999). Pumping with plant P-type ATPases. Journal of Experimental Botany, 50(Special Issue), 883–893.CrossRefGoogle Scholar
  66. Pence, N. S., Larsen, P. B., Ebbs, S. D., Letham, D. L., Lasat, M. M., Garvin, D. F., Eide, D., & Kochian, L. V. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences, 97(9), 4956–4960.CrossRefGoogle Scholar
  67. Pilon-Smits, E. (2005). Phytoremediation. Annual Reviewof Plant Biology, 56, 15–39.CrossRefGoogle Scholar
  68. Prasad, M.N.V. (2004) Heavy metal stress in plants: In M.N.V. Prasad. (Eds.), From Biomolecules to Ecosystems. Springer-Verlag Heidelberg. 2nd Ed. pp. 462.Google Scholar
  69. Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—a review. Environment International, 29(4), 529–540.CrossRefGoogle Scholar
  70. Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169–181.CrossRefGoogle Scholar
  71. Raskin, I., Kumar, P. N., Dushenkov, S., & Salt, D. E. (1994). Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology, 5(3), 285–290.CrossRefGoogle Scholar
  72. Raskin, I., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8(2), 221–226.CrossRefGoogle Scholar
  73. Rea, P. A. (1999). MRP subfamily ABC transporters from plants and yeast. Journal of Experimental Botany, 50(Special Issue), 895–913.Google Scholar
  74. Rea, P. A. (2007). Plant ATP-binding cassette transporters. Annual Review of Plant Biology, 58, 347–375.CrossRefGoogle Scholar
  75. Rieuwerts, J. S., Thornton, I., Farago, M. E., & Ashmore, M. R. (1998). Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability, 10(2), 61–75.CrossRefGoogle Scholar
  76. Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology, 49(1), 643–668.CrossRefGoogle Scholar
  77. Sarma, H. (2011). Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4(2), 118–138.CrossRefGoogle Scholar
  78. Saxena, P., & Misra, N. (2010). Remediation of heavy metal contaminated tropical land. In Sherameti, I. and A. Varma (Eds.) Soil Heavy Metals Soil Biology (pp. 431–477). Springer Berlin Heidelberg.Google Scholar
  79. Schat, H., Sharma, S. S., & Vooijs, R. (1997). Heavy metal‐induced accumulation of free proline in a metal‐tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia Plantarum, 101(3), 477–482.CrossRefGoogle Scholar
  80. Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57(4), 711–726.CrossRefGoogle Scholar
  81. Sharma, S. S., & Dietz, K. J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14(1), 43–50.CrossRefGoogle Scholar
  82. Sharma, S. S., Kaul, S., Metwally, A., Goyal, K. C., Finkemeier, I., & Dietz, K. J. (2004). Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Science, 166(5), 1287–1295.CrossRefGoogle Scholar
  83. Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057–1060.CrossRefGoogle Scholar
  84. Supek, F., Supekova, L. U. B. I. C. A., Nelson, H. A. N. N. A. H., & Nelson, N. A. T. H. A. N. (1997). Function of metal-ion homeostasis in the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function. Journal of Experimental Biology, 200(2), 321–330.Google Scholar
  85. Tester, M., & Leigh, R. A. (2001). Partitioning of nutrient transport processes in roots. Journal of Experimental Botany, 52(suppl 1), 445–457.CrossRefGoogle Scholar
  86. Thakur, S., & Sharma, S. S. (2015). Characterization of seed germination, seedling growth, and associated metabolic responses of Brassica juncea L. cultivars to elevated nickel concentrations. Protoplasma, 1–10.Google Scholar
  87. Thomine, S., Wang, R., Ward, J. M., Crawford, N. M., & Schroeder, J. I. (2000). Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences, 97(9), 4991–4996.Google Scholar
  88. Tong, Y. P., Kneer, R., & Zhu, Y. G. (2004). Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends in Plant Science, 9(1), 7–9.CrossRefGoogle Scholar
  89. Utsunamyia, T. (1980). Japanese Patent Application no. 55–72959.Google Scholar
  90. Vacchina, V., Mari, S., Czernic, P., Marquès, L., Pianelli, K., Schaumlöffel, D., Lebrun, M., & Lobinski, R. (2003). Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Analytical Chemistry, 75(11), 2740–2745.CrossRefGoogle Scholar
  91. van der Zaal, B. J., Neuteboom, L. W., Pinas, J. E., Chardonnens, A. N., Schat, H., Verkleij, J. A., & Hooykaas, P. J. (1999). Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiology, 119(3), 1047–1056.CrossRefGoogle Scholar
  92. van Hoof, N. A., Hassinen, V. H., Hakvoort, H. W., Ballintijn, K. F., Schat, H., Verkleij, J. A., Ernst, W. H. O., Karenlampi, S. O., & Tervahauta, A. I. (2001). Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiology, 126(4), 1519–1526.CrossRefGoogle Scholar
  93. Verkleij, J. A. C., & Schat, H. (1990). Mechanisms of metal tolerance in higher plants.In Shaw AJ (Ed.), Heavy metal tolerance in plants: Evolutionary aspects, (CRC Press, Boca Raton, FL), pp 179–193.Google Scholar
  94. Verma, S., & Dubey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164, 645–655.CrossRefGoogle Scholar
  95. Vögeli-Lange, R., & Wagner, G. J. (1990). Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves implication of a transport function for cadmium-binding peptides. Plant Physiology, 92(4), 1086–1093.CrossRefGoogle Scholar
  96. Wang, Z., Zhang, Y., Huang, Z., & Huang, L. (2008). Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant and Soil, 310(1–2), 137–149.CrossRefGoogle Scholar
  97. Williams, L. E., Pittman, J. K., & Hall, J. L. (2000). Emerging mechanisms for heavy metal transport in plants. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1465(1), 104–126.CrossRefGoogle Scholar
  98. Woolson, E. A. (1973). Arsenic phytotoxicity and uptake in six vegetable crops. Weed Science, 21, 524–527.Google Scholar
  99. Yang, X., Feng, Y., He, Z., & Stoffella, P. J. (2005). Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology, 18(4), 339–353.CrossRefGoogle Scholar
  100. Zhao, H., & Eide, D. (1996). The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. Journal of Biological Chemistry, 271(38), 23203–23210.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sveta Thakur
    • 1
  • Lakhveer Singh
    • 1
    Email author
  • Zularisam Ab Wahid
    • 1
  • Muhammad Faisal Siddiqui
    • 2
  • Samson Mekbib Atnaw
    • 1
  • Mohd Fadhil Md Din
    • 3
  1. 1.Faculty of Engineering TechnologyUniversiti Malaysia PahangKuantanMalaysia
  2. 2.Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research InstituteNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of Environmental Engineering, Faculty of Civil EngineeringUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia

Personalised recommendations