Advertisement

Evaluation of pesticide residues of organochlorine in vegetables and fruits in Qatar: statistical analysis

  • Noora M. Al-Shamary
  • Mohammad A. Al-Ghouti
  • Ismail Al-Shaikh
  • Saeed H. Al-Meer
  • Talaat A. Ahmad
Article

Abstract

The study aimed to examine the residues of organochlorines pesticides (OCPs) in vegetables and fruits in Qatar. A total of 127 samples was studied. Ninety percent of the imported samples recorded residues above the maximum residue levels (MRLs). The most frequently detected OCP in the samples was heptachlor (found in 75 samples). In the comparisons between the washed and unwashed samples, no significant differences were observed (P > 0.05). However, the effect of washing process with tap water depended on the type of vegetables and fruits.

Keywords

Organochlorine Pesticide residues GC-ECD/GC-MS Fruits and vegetables Statistical analysis 

References

  1. Ahmad, R., Salem, N., & Estaitieh, H. (2010). Occurrence of organochlorine pesticide residues in eggs, chicken and meat in Jordan. Chemosphere, 78(6), 667–671.CrossRefGoogle Scholar
  2. Shrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2(1), 21–25.CrossRefGoogle Scholar
  3. Analytical Procedures and Methods Validation. (2000). Food and Drug Administration. Retrieved From the Environmental Protection Agency. website: http://www.fda.gov
  4. Anastassiades, A., Lehotay, S. J., Štajnbaher, D., & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. Journal of AOAC International, 86(2), 412–431.Google Scholar
  5. Bakırcı, G. T., Acay, D. B. Y., Bakırcı, F., & Otles, S. (2014). Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chemistry, 160, 379–392.CrossRefGoogle Scholar
  6. Bempah, C. K., Asomaning, J., Ansong, D. A., Boateng, J., & Asabere, S. B. (2012). Contamination levels of selected organochlorine and organophosphorous pesticides in Ghanaian fruits and vegetables. Nutrition and food science. Emir. J. Food Agric, 24(4), 293–301.Google Scholar
  7. Bolognesi, C., & Merlo, F. D. (2011). Pesticides: human health effects. Reference Module in Earth Systems and Environmental Sciences, 438–453.Google Scholar
  8. Bulut, S., Akkaya, L., & Gök Veli, K. M. (2011). Organochlorine pesticide (OCP) residues in cow’s, buffalo’s, and sheep’s milk from Afyonkarahisar region, Turkey. Springer Science, Business Media, 181, 555–562.Google Scholar
  9. de Boer, J., & Law, R. J. (2003). Developments in the use of chromatographic techniques in marine laboratories for the determination of halogenated contaminants and polycyclic aromatic hydrocarbons. PubMed. Retrieved From the NCBI website, http://www.ncbi.nlm.nih.gov.Google Scholar
  10. Fenik, J., Tankiewicz, M., & Biziuk, M. (2011). Properties and determination of pesticides in fruits and vegetables. Trends in Analytical Chemistry, 30(6), 814–826.CrossRefGoogle Scholar
  11. Gutierrez, J. A., & Londoño, A. (2009). Determinación de plaguicidas organoclorados y organofosforados en tomates de cadena en las ciudades de Pereira y Armania, Colombia. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas, 8(3), 165–171.Google Scholar
  12. IARC. (2015). IARC monographs volume 112: evaluation of five organophosphate insecticides and herbicides. Retrieved From the International Agency for Research on Cancer website: http://www.iarc.fr.Google Scholar
  13. Keith, L.H., ed. (1996) Compilation of EPA’s sampling and analysis methods: Chelsea, Mich., Lewis Publishers, Boca Raton. 803 p.Google Scholar
  14. Kin, C. M., & Huat, T. G. (2010). Headspace solid-phase microextraction for the evaluation of pesticide residue contents in cucumber and strawberry after washing treatment. Food Chemistry, 123(3), 760–764.CrossRefGoogle Scholar
  15. Kmellara, B., Abrankoa, L., Fodora, P., & Lehotay, S. J. (2010). Routine approach to qualitatively screening 300 pesticides and quantification of those frequently detected in fruit and vegetables using liquid chromatography tandem mass spectrometry (LC–MS/MS). Food Additives and Contaminants, 27(10), 1415–1430.CrossRefGoogle Scholar
  16. Mao, X., Wan, Y., Yan, A., Shen, M., & Wei, Y. (2012). Simultaneous determination of organophosphorus, organochlorine, pyrethriod and carbamate pesticides in Radix astragali by microwave-assisted extraction/dispersive-solid phase extraction coupled with GC–MS. Talanta, 97, 131–141.CrossRefGoogle Scholar
  17. National Implementation Plan (NIP) for Stockholm Convention on Persistent Organic Pollutants (POPs). (2011). Ministry of Environment. Retrieved from: http://chm.pops.int/Implementation/NIPs/NIPSubmissions.
  18. Rialch P. (2012). Removing pesticides from fruits and vegetables. Retrieved From the Center for Science and Environment website: http://www.cseindia.org.Google Scholar
  19. Safiatou, B. D. (2007). Pesticide residues in soil and water from four cotton growing area of Mali, West Africa. Journal of Agriculture, Food and Environment Sciences, 1, 1–9.Google Scholar
  20. Saito, Y., Kodama, S., Matsunaga, A., & Yamamoto, A. (2004). Multiresidue determination of pesticides in agricultural products by gas chromatography/mass spectrometry with large volume injection. Journal of AOAC International, 87(6), 1356–1367.Google Scholar
  21. Schenck, F. J., & Lehotay, S. J. (2000). Does further clean-up reduce the matrix enhancement effect in gas chromatographic analysis of pesticide residues in food? Journal of Chromatography A, 868, 51–61.CrossRefGoogle Scholar
  22. Schenck, F. J., S Lehotay, J., & Vega, V. (2002). Comparison of solid-phase extraction sorbents for cleanup in pesticide residue analysis of fresh fruits and vegetables. Journal of Separation Science, 25, 883–890.CrossRefGoogle Scholar
  23. Soliman, K. M. (2001). Changes in concentrations of pesticide residues in potatoes during washing and home preparation. Food and Chemical Toxicology, 39, 887–891.CrossRefGoogle Scholar
  24. Statistical Consultant. (2015). T-test. Retrieved from the Statistically Significant Consulting website: http://www.statisticallysignificantconsulting.com/Ttest.htm.Google Scholar
  25. United State National Toxicology Program. (2015). Regulatory actions for years 2010 to 2015. NTP, US. Retrieved From the National Toxicology Program website: http://ntp.niehs.nih.govGoogle Scholar
  26. Wells D.E., Hess P. (2000). Separation, clean-up and recoveries of persistent trace organic contaminants from soils, sediment and biological matrices. In D. Barceló (Ed.) Sample handling and trace analysis of pollutants, techniques, applications and quality assurance, Techniques and Instrumentation in Analytical Chemistry, (Vol. 21, 73–116). Elsevier: Amsterdam.Google Scholar
  27. Yamazaki, Y., & Ninomiya, T. (1999). Determination of benomyl, diphenyl, o-phenylphenol, thiabendazole, chlorpyrifos, methidathion, and methyl parathion in oranges by solid-phase extraction, liquid chromatography, and gas chromatography. Journal of AOAC International, 82, 1474–1478.Google Scholar
  28. Yang, F., Bian, Z., Chen, X., Liu, S., Liu, Y., & Tang, G. (2013). Analysis of 118 pesticides in tobacco after extraction with the modified QuEChERS method by LC–MS-MS. Journal of Chromatographic Science, 1–5.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Noora M. Al-Shamary
    • 1
  • Mohammad A. Al-Ghouti
    • 2
  • Ismail Al-Shaikh
    • 1
  • Saeed H. Al-Meer
    • 3
  • Talaat A. Ahmad
    • 2
  1. 1.Environmental Science CenterQatar UniversityDohaState of Qatar
  2. 2.Department of Biological and Environmental Sciences, College of Arts and ScienceQatar UniversityDohaState of Qatar
  3. 3.Chemistry and Earth Sciences, College of Arts and ScienceQatar UniversityDohaState of Qatar

Personalised recommendations