Advertisement

Effects of light shading and climatic conditions on the metabolic behavior of flonicamid in red bell pepper

  • Da-I Jung
  • Waziha Farha
  • A. M. Abd El-AtyEmail author
  • Sung-Woo Kim
  • Md. Musfiqur Rahman
  • Jeong-Heui Choi
  • Md. Humayun Kabir
  • So Jeong Im
  • Young-Jun Lee
  • Lieu. T. B. Truong
  • Ho-Chul Shin
  • Geon-Jae Im
  • Jae-Han ShimEmail author
Article

Abstract

The degradation behavior of flonicamid and its metabolites (4-trifluoromethylnicotinic acid (TFNA) and N-(4-trifluoromethylnicotinoyl) glycine (TFNG)) was evaluated in red bell pepper over a period of 90 days under glass house conditions, including high temperature, low and high humidity, and in a vinyl house covered with high density polyethylene light shade covering film (35 and 75 %). Flonicamid (10 % active ingredient) was applied (via foliar application) to all fruits, including those groups grown under normal conditions (glass house) or under no shade cover (vinyl house). Samples were extracted using a Quick, Easy, Cheap, Effective, Rugged, and Safe “QuEChERS” method and analyzed using liquid chromatography-tandem mass spectrometry (LC/MS/MS). The method performance, including linearity, recovery, limits of detection (LOD), and quantitation (LOQ), was satisfactory. Throughout the experimental period, the residual levels of flonicamid and TFNG were not uniform, whereas that of TFNA remained constant. The total sum of the residues (flonicamid and its metabolites) was higher in the vinyl house with shade cover than in the glass house, under various conditions. The total residues were significantly higher when the treatment was applied under high light shade (75 %). The flonicamid half-life decreased from 47.2 days (under normal conditions) to 28.4 days (at high temperatures) in the glass house, while it increased from 47.9 days (no shade cover) to 66 days (75 % light shading) in the vinyl house. High humidity leads to decreases in the total sum of flonicamid residues in red bell pepper grown in a glass house, because it leads to an increase in the rate of water loss, which in turn accelerates the volatilization of the pesticide. For safety reasons, it is advisable to grow red bell pepper under glass house conditions because of the effects of solar radiation, which increases the rate of flonicamid degradation into its metabolites.

Keywords

Degradation Half-life Flonicamid Metabolites Shade cover Humidity Temperature Vinyl house Glass house 

Notes

Acknowledgments

This study was supported by the Ministry of Science, Ict and Future Planning (MSIP), and Rural Development Administration (Grant No. PJ008979), Republic of Korea.

References

  1. Cho, S. R., Koo, H. N., Yoon, C. M., & Kim, G. H. (2011). Sublethal effect of flonicamid and thiamethoxam on green peach aphid, Myzus persicae and feeding behavior analysis. Journal of the Korean Society for Applied Biological Chemistry, 54(6), 889–898.CrossRefGoogle Scholar
  2. Dixon, A. (2002). OP alternative status granted to new insecticide, flonicamid (F 1785GH) for use on ornamentals grown in indoor greenhouses. Alternative to OP’s and other chemistries. Washington: U.S. Environmental Protection Agency.Google Scholar
  3. European Commission EU pesticide database. (2015). EU pesticide database. <http://ec.europa.eu/sanco_pesticides/public/index.cfm?event=pesticide.residue.displayMRL&language=EN>.
  4. European Food Safety Authority. (2010). Guidance on a harmonised framework for pest risk assessment and the identification and evaluation of pest risk management options by EFSA. EFSA Journal, 8(2), 1495.Google Scholar
  5. Fantke, P., Juraske, R., Antón, A., Friedrich, R., & Jolliet, O. (2011). Dynamic multicrop model to characterize impacts of pesticides in food. Environmental Science and Technology, 45, 8842–8849.CrossRefGoogle Scholar
  6. Fantke, P., Wieland, P., Wannaz, C., Friedrich, R., & Jolliet, O. (2012a). Dynamics of pesticide uptake into plants: from system functioning to parsimonious modeling. Environmental Modelling and Software, 40, 316–324.CrossRefGoogle Scholar
  7. Fantke, P., Wieland, P., Juraske, R., Shaddick, G., Sevigné, E., Friedrich, R., & Jolliet, O. (2012b). Parameterization models for pesticide exposure via crop consumption. Environmental Science and Technology, 46, 12864–12872.CrossRefGoogle Scholar
  8. Garau, V. L., Angioni, A., Aguilera Del Real, A., Russo, M. T., & Cabras, P. (2002). Disappearance of azoxystrobin, cyprodinil, and fludioxonil on tomato in a greenhouse. Journal of Agricultural and Food Chemistry, 50, 1929–1932.CrossRefGoogle Scholar
  9. Health Canada Pest Management Regulatory Agency. (2010). Flonicamid. Ontario, Canada: Health Canada.Google Scholar
  10. Juraske, R., Antón, A., & Castells, F. (2008). Estimating half-lives of pesticides in/on vegetation for use in multimedia fate and exposure models. Chemosphere, 70, 1748–1755.CrossRefGoogle Scholar
  11. Ko, A. Y., Abd El-Aty, A. M., Rahman, M. M., Jang, J., Kim, S. W., Choi, J. H., & Shim, J. H. (2014). A modified QuEChERS method for simultaneous determination of flonicamid and its metabolites in paprika using tandem mass spectrometry. Food Chemistry, 157, 413–420.CrossRefGoogle Scholar
  12. Korea Agro-Fisheries & Food Trade Corporation. (2014). Recently industry trends of paprika <http://www.kati.net/mag/domesticView.do?menuCode=701&articleseq=100278&bbsid=1&pageIndex=1&searchCondition=&searchKeyword=>.
  13. Kurz, M. H. S., Gonçalves, F. F., Adaime, M. B., da Costa, I. F. D., Primel, E. G., & Zanella, R. (2008). A gas chromatographic method for the determination of the fungicide chlorothalonil in tomatoes and cucumber and its application to dissipation studies in experimental greenhouses. Journal of the Brazilian Chemical Society, 19(6), 1129–1135.CrossRefGoogle Scholar
  14. Lee, S. W., Choi, J. H., Cho, S. K., Yu, H. A., Abd El-Aty, A. M., & Shim, J. H. (2011). Development of a new QuEChERS method based on dry ice for the determination of 168 pesticides in paprika using tandem mass spectrometry. Journal of Chromatography. A, 1218(28), 4366–4377.CrossRefGoogle Scholar
  15. Martinez Galera, M., Gil Garcia, M. D., Rodriguez Lallena, J. A., Lopez Lopez, T., & Martinez Vidal, J. L. (2003). Dissipation of pyrethroid residues in peppers, zucchinis, and green beans exposed to field treatments in greenhouses: evaluation by decline curves. Journal of Agricultural and Food Chemistry, 51(19), 5745–5751.CrossRefGoogle Scholar
  16. Marutani, M., & Endirveersingham, V. (2003). Shadecovers affect degradation of carbaryl on field-grown pakchoi. HortTechnology, 13(4), 637–640.Google Scholar
  17. Matsufuji, H., Nakamura, H., Chino, M., & Takeda, M. (1998). Antioxidant activity of capsanthin and the fatty acid ester in paprika (Capsicum annuum). Journal of Agricultural and Food Chemistry, 46, 3468–3472.CrossRefGoogle Scholar
  18. Ministry of Food and Drug Safety (MFDA). (2015). Maximum residue limits of pesticide. <http://fse.foodnara.go.kr/residue/mrl/mrl_search.jsp>.
  19. Montemurro, N., Grieco, F., Lacertosa, G., & Visconti, A. (2002). Chlorpyrifos decline curves and residue levels from different commercial formulations applied to oranges. Journal of Agricultural and Food Chemistry, 50, 5975–5980.CrossRefGoogle Scholar
  20. Morita, M., Ueda, T., Yoneda, T., Koyanagi, T., Murai, S., Matsuo, N., Stratmann, B., & Ruelens, R. (2000). Ishihara Sangyo Kaisha, Ltd. IKI-220—a novel systemic aphicide. BCPC Conference - Pests & Disease, 59–65.Google Scholar
  21. Morita, M., Ueda, T., Yoneda, T., Koyanagi, T., & Haga, T. (2007). Flonicamid, a novel insecticide with a rapid inhibitory effect on aphid feeding. Pest Management Science, 63, 969–973.CrossRefGoogle Scholar
  22. Park, K. H., Choi, J. H., Abd El-Aty, A. M., Cho, S. K., Park, J. H., Kim, B. M., Yang, A., Na, T. W., Rahman, M. M., Im, G. J., & Shim, J. H. (2012). Determination of spinetoram and its metabolites in amaranth and parsley using QuEChERS-based extraction and liquid chromatography–tandem mass spectrometry. Food Chemistry, 134(4), 2552–2559.CrossRefGoogle Scholar
  23. SANCO. (2009). Document No. 10684. Method validation and quality control procedures for pesticide residues analysis in food and feed http://ec.europa.eu/food/plant/protection/resources/qualcontrol_en.pd.
  24. Son, K. A., Kwon, H. Y., Jin, Y. D., Park, B. J., Kim, J. B., Park, J. H., Kim, T. K., Im, G. J., & Lee, K. W. (2013). The behavior of residues of flonicamid and metabolites in sweet peppers. The Korean Journal of Pesticide Science, 17(3), 145–154.CrossRefGoogle Scholar
  25. The Japan Food Chemical Research Foundation, (2015). Table of MRLs for Agricultural Chemicals. <http://www.m5.ws001.squarestart.ne. jp/foundation/agrdtl.php?a_inq = 65450>.
  26. Tomlin, C. D. S. (Ed.). (2003). The pesticide manual. Surrey: British Crop Protection Council.Google Scholar
  27. Trapp, S., & Kulhánek, A. (2006). Human exposure assessment for food—one equation for all crops is not enough. In M. Mackova, D. Dowling, & T. Macek (Eds.), Phytoremediation and rhizoremediation (pp. 285–300). Dordrecht: Springer Press.CrossRefGoogle Scholar
  28. Xie, W. M., Ko, K. Y., Kim, S. H., Chang, H. R., & Lee, K. S. (2006). Determination of abamectin residue in paprika by high-performance liquid chromatography. Korean Journal of Environmental Agriculture, 25(4), 359–364.CrossRefGoogle Scholar
  29. Yukimoto, M., & Hamada, K. (1985). Eds In Genshoku Sakumotsu No Yakugai, Zenkoku Noson Kyoiku Kyokai: Tokyo, Japan, (in Japanese).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Da-I Jung
    • 1
  • Waziha Farha
    • 1
  • A. M. Abd El-Aty
    • 2
    • 3
    Email author
  • Sung-Woo Kim
    • 1
  • Md. Musfiqur Rahman
    • 1
  • Jeong-Heui Choi
    • 1
  • Md. Humayun Kabir
    • 1
  • So Jeong Im
    • 1
  • Young-Jun Lee
    • 1
  • Lieu. T. B. Truong
    • 1
  • Ho-Chul Shin
    • 2
  • Geon-Jae Im
    • 4
  • Jae-Han Shim
    • 1
    Email author
  1. 1.Biotechnology Research Institute, College of Agriculture and Life SciencesChonnam National UniversityGwangjuRepublic of Korea
  2. 2.Department of Veterinary Pharmacology and Toxicology, College of Veterinary MedicineKonkuk UniversitySeoulRepublic of Korea
  3. 3.Department of Pharmacology, Faculty of Veterinary MedicineCairo UniversityGizaEgypt
  4. 4.Department of Agro-Food SafetyNational Academy of Agricultural Science, Rural Development AdministrationWanjuRepublic of Korea

Personalised recommendations