Environmental impact of phosphogypsum stockpile in remediated Schistos waste site (Piraeus, Greece) using a combination of γ-ray spectrometry with geographic information systems

  • F. Papageorgiou
  • A. Godelitsas
  • T. J. Mertzimekis
  • S. Xanthos
  • N. Voulgaris
  • G. Katsantonis
Article

Abstract

From 1979 to 1989, ten million tons of phosphogypsum, a waste by-product of the Greek phosphate fertilizer industry, was disposed into an abandoned limestone quarry in Schistos former waste site, Piraeus (Greece). The quarry has been recently closed and remediated using geomembranes and thick soil cover with vegetation. A part of the deposited phosphogypsum has been exposed due to intense rainfall episodes leading to concerns about how could potentially released radioactivity affect the surrounding environment. This study seeks to assess the environmental impact of the phosphogypsum deposited in the Schistos quarry, using laboratory-based γ-ray spectrometry measurements and geographical information systems. Radioactivity concentrations were mapped onto spatial-data to yield a spatial-distribution of radioactivity in the area. The data indicate elevated 226Ra concentrations in a specific area on the steep south-eastern cliff of the remediated waste site that comprises uncovered phosphogypsum and is known to be affected by local weather conditions. 226Ra concentrations range from 162 to 629 Bq/kg, with an average activity being on the low side, compared to the global averages for phosphogypsum. Nevertheless, the low environmental risk may be minimized by remediating this area with geomembranes and thick soil cover with vegetation, a technique, which has worked successfully over the remainder of the remediated quarry.

Keywords

Phosphogypsum Radioactivity Radium γ-ray spectrometry GIS Greece 

References

  1. Abdel-Aal, E. A. (2004). Crystallization of phosphogypsum in continuous phosphoric acid industrial plant. Crystal Research and Technology, 39(2), 123–130.CrossRefGoogle Scholar
  2. Akovali, Y. A. (1996). Nuclear Data Sheets, 77, 433. doi:10.1006/ndsh.1996.0005.CrossRefGoogle Scholar
  3. Alexandropoulos, N. G., Alexandropoulou, T., Anagnostopoulos, D., Evangelou, E., Kotsis, K. T., & Theodoridou, I. (1986). Chernobyl fallout on Ioannina, Greece. Nature, 322(6082), 779.CrossRefGoogle Scholar
  4. Al-Hwaiti, M. S., Ranville, J. F., & Ross, P. E. (2010). Bioavailability and mobility of trace metals in phosphogypsum from Aqaba and Eshidiya, Jordan. Chemie der Erde, 70, 283–291.CrossRefGoogle Scholar
  5. Ali, K. K., & Awad Dh, Y. (2015). Radiological assessment of Iraqi phosphate rock and phosphate fertilizers. Arabian Journal of Geosciences. doi:10.1007/s12517-015-1898-0.Google Scholar
  6. Al-Masri, M. S., & Al-Bich, F. (2002). Polonium-210 distribution in Syrian phosphogypsum. Journal of Radioanalytical and Nuclear Chemistry, 251(3), 431–435.CrossRefGoogle Scholar
  7. Al-Masri, M. S., Amin, Y., Ibrahim, S., & Al-Bich, F. (2004). Distribution of some trace metals in Syrian phosphogypsum. Applied Geochemistry, 19, 747–753.CrossRefGoogle Scholar
  8. Azouazi, M., Ouahidi, Y., Fakhi, S., Andres, Y., Abbe, J. C., & Benmansour, M. (2001). Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco. Journal of Environmental Radioactivity, 54, 231–242.CrossRefGoogle Scholar
  9. Beretka, J. (1990). The current state of utilization of phosphogypsum in Australia. In: Proceedings of the Third International Symposium on Phosphogypsum, Orlando, FL, FIPR Pub. No. 01-060-083, December 1990, II: 394–401Google Scholar
  10. Berish, C. W. (1990). Potential environmental hazards of phosphogypsum storage in central Florida. Proceedings of the third international symposium on phosphogypsum. Orlando, FL, FIPR Pub. No.01060083; 2: 1–29.Google Scholar
  11. Bituh, T., Marovic, G., Franic, Z., Sencar, J., & Bronzovic, M. (2009). Radioactive contamination in Croatia by phosphate fertilizer production. Journal of Hazardous Materials, 162, 1199–1203.CrossRefGoogle Scholar
  12. Bituh, T., Petrinec, B., Skoko, B., Vucic, Z., & Marovic, G. (2015). Measuring and modelling the radiological impact of a phosphogypsum deposition site on the surrounding environment. Archives of Industrial Hygiene and Toxicology, 66, 31–40.CrossRefGoogle Scholar
  13. Borges, R. C., Ribeiro, F. C. A., Da Costa, L. D., & Bernedo, A. V. B. (2013). Radioactive characterization of phosphogypsum from Imbituba, Brazil. Journal of Environmental Radioactivity, 126, 188–195.CrossRefGoogle Scholar
  14. Chauhan, P., Chauhan, R. P., & Gupta, M. (2013). Estimation of naturally occurring radionuclides in fertilizers using gamma spectrometry and elemental analysis by XRF and XRD techniques. Microchemical Journal, 106, 73–78.CrossRefGoogle Scholar
  15. Diamantopoulos A., Krohe A., Mposkos E. (2009). Kinematics of conjurate shear zones, strain partitioning and fragmentation of the Upper Rigid Crust during denudation of High–P rocks (Pelagonian and Sub-Pelagonian Zones, Greece). In: Robertson, A.H.F, Parlak, O., Kaller, F., (Eds), Tethyan Tectonics of the Mediterranean Region: Some recent Advances. Tectonophysics, 473: 84–98.Google Scholar
  16. El-Didamony, H., Gado, H. S., Awwad, N. S., Fawzy, M. M., & Attallah, M. F. (2013). Treatment of phosphogypsum waste produced from phosphate ore processing. Journal of Hazardous Materials, 244–245, 596–602.CrossRefGoogle Scholar
  17. EPA (1998) Code of Federal Regulations, 1998.Title 40, Vol. 7, Parts 61.202 and 61.204 (40CFR61.202 and 40CFR61.204).Google Scholar
  18. Evangeliou, N., Florou, H., & Kritidis, P. (2013). A survey of 137Cs of the Eastern Mediterranean marine environment from the pre-Chernobyl age to the present. Environmental Science & Technology Letters, 1, 102–107.CrossRefGoogle Scholar
  19. Fourati, A., & Faludi, G. (1988). Changes in radioactivity of phosphate rocks during the process of production. Journal of Radioanalytical and Nuclear Chemistry, 125, 287–293.CrossRefGoogle Scholar
  20. Fukuma, H. T., Fernandes, E. A. N., & Quinelato, A. L. (2000). Distribution of natural radionuclides during the processing of phosphate rock from Itataia-Brazil for production of phosphoric acid and uranium concentrate. Radiochimica Acta, 88, 809–812.CrossRefGoogle Scholar
  21. Gezer, F., Turhan, S., Ugur, F. A., Goren, E., Kurt, M. Z., & Ufuktepe, Y. (2012). Natural radionuclide content of disposed phosphogypsum as TENORM produced from phοsphorus fertilizer industry in Turkey. Annals of Nuclear Energy, 50, 33–37.CrossRefGoogle Scholar
  22. Haridasan, P. P., Maniyan, C. G., Pillai, P. M. B., & Khan, A. H. (2002). Dissolution characteristics of 226Ra from phosphogypsum. Journal of Environmental Radioactivity, 62, 287–294.CrossRefGoogle Scholar
  23. Hetman, A., Dorda, J., & Zipper, W. (1998). Determination of radium isotopes concentrations in mineral waters by liquid scintillation method. Nukleonika, 43(4), 481–488.Google Scholar
  24. Jia, G., & Jia, J. (2012). Determination of Radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology. Journal of Environmental Radioactivity, 106, 98–119.CrossRefGoogle Scholar
  25. Jia, G., & Torri, G. (2007). Estimation of radiation doses to members of the public in Italy from intakes of some important naturally occurring radionuclides in drinking water (238U, 234U, 235U, 226Ra, 228Ra, 224Ra and 210Po). The International Journal of Applied Radiation and Isotopes, 65, 849–857.CrossRefGoogle Scholar
  26. Kacimi, L., Simon-Masseron, A., Ghomari, A., & Derriche, Z. (2006). Reduction of clinkerization temperature by using phosphogypsum. Journal of Hazardous Materials, 137(1), 129–137.CrossRefGoogle Scholar
  27. Kehagia, K., Koukouliou, V., Bratakos, S., Potiriadis, K. (2004). Biossay measurements for the evaluation of occupational exposure during the decontamination of a phosphoric production unit in Greece In: Proceedings of the 9th International Conference on Health Effects of Incorporated Radionuclides.Google Scholar
  28. Khalifa, N. A., & El-Arabi, A. M. (2005). Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qenagovernate, Upper Egypt. Journal of Environmental Radioactivity, 84(1), 51–64.CrossRefGoogle Scholar
  29. Kobal, I., Brajnik, D., Kaluza, F., & Vengust, M. (1990). Radionuclides in effluents from coal mines, a coal-fired powerplant, and a phosphate processing plant in Zasanje, Slovenia (Yugoslavia). Health Physics, 58, 8–85.Google Scholar
  30. Koukouliou, V. (2006). Management and regulation of residues containing NORM in Greece In: Regulatory and management approaches for the control of environmental residues containing naturally occurring radioactive material (NORM), IAEA, Vienna.Google Scholar
  31. Koukouliou, V., Potiriadis, K. and Kehagia, K. (2002) Investigation of the restoration of an area contaminated as a result of an abandoned phosphate fertilizer industry, In: The Natural Radiation Environment (NRE-VII), Elsevier, Rhodes, GreeceGoogle Scholar
  32. Koukouliou, V., Potiriadis, C. and Kehagia, K. (2003) Regulatory framework concerning the phosphogypsum utilization in agriculture in Greece. In: Proceedings of the 3rd Dresden Symposium on Radiation Protection ENOR III NUSEC ENOR, Dresden, Germany.Google Scholar
  33. Koukouliou, V., Potiriadis, C., Kehagia, K., Stamatis, V., Seferlis, S., Bratakos S.and Kamenopoulou V. (2005). Occupational exposure monitoring during the decommissioning of a phosphoric acid production unit In: IM2005 - European workshop on individual monitoring of ionizing radiation Book of abstracts, Vienna.Google Scholar
  34. Laiche, T. P., & Scott, M. L. (1991). A radiological evaluation of phosphogypsum. Health Physics, 60, 691–693.CrossRefGoogle Scholar
  35. Lopez-Coto, I., Mas, J. L., Vargas, A., & Bolivar, J. P. (2014). Studying radon exhalation rates variability from phosphogypsum piles in the SW of Spain. Journal of Hazardous Materials, 280, 464–471.CrossRefGoogle Scholar
  36. Luther, S. M., Dudas, M. J., & Rutherford, P. M. (1993). Radioactivity and chemical characteristics of Alberta phosphogypsum. Water, Air, and Soil Pollution, 69, 277–290.CrossRefGoogle Scholar
  37. Mullins, G. L., Mitchell Jr. C. C. (1990) Use of phosphogypsum to increase yield and quality of annual forages In: FIPR Pub. No. 01-048-084, Auburn University, 56.Google Scholar
  38. NEA/OECD (1979). Exposure to radiation from the Natural Radioactivity in Building Materials, Nuclear Energy Agency/Organization for Economic Co-operation and Development p. 34.Google Scholar
  39. Okeji, M. C., Agwu, K. K., & Idigo, F. U. (2012). Assessment of natural radioactivity in phosphate ore, phosphogypsum, and soil samples around a phosphate fertilizer plant in Nigeria. Bulletin of Environment Contamination and Toxicology, 89, 1078–1081.CrossRefGoogle Scholar
  40. Pantazopoulou, E., Zebiliadou, O., Noli, F., Mitrakas, M., Samaras, P., & Zouboulis, A. (2015). Utilization of phosphogypsum in tannery sludge stabilization and evaluation of the radiological impact. Bulletin of Environment Contamination and Toxicology, 94, 352–357.CrossRefGoogle Scholar
  41. Papageorgiou, F., Godelitsas, A., Xanthos, S., Voulgaris, N., Nastos, P., Mertzimekis, T. J., Argyraki, A., & Katsantonis, G. (2014). Characterization of phosphogypsum deposited in Schistos remediated waste site (Piraeus, Greece). Uranium Past and Future Challenges. doi:10.1007/978-3-319-11059-2_31,271–279.Google Scholar
  42. Papastefanou, C., Stoulos, S., Ioannidou, A., & Manolopoulou, M. (2006). The application of phosphogypsum in agriculture and the radiological impact. Journal of Environmental Radioactivity, 89, 188–198.CrossRefGoogle Scholar
  43. Parreira, A. B., Kobayashi, A. R. K., Jr., & Silvestra, O. B. (2003). Influence of Portland cement type on unconfined compressive strength and linear expansion of cement–stabilized phosphogypsum. Journal of Environmental Engineering, 129, 956–960.CrossRefGoogle Scholar
  44. Perez-Lopez, R., Alvarez-Valero, A., & Nieto, J. M. (2007). Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. Journal of Hazardous Materials, 148, 745–750.CrossRefGoogle Scholar
  45. Petropoulos, N. P., Hinis, E. P., & Simopoulos, S. E. (1996). 137Cs Chernobyl fallout in Greece and its associated radiological impact. Environment International, 22(1), 5369–5373.Google Scholar
  46. Petropoulos, N. P., Anagnostakis, M. J., Hinis, E. P., & Simopoulos, S. E. (2001). Geographical mapping and associated fractal analysis of the long-lived Chernobyl fallout in Greece. Journal of Environmental Radioactivity, 53, 59–66.CrossRefGoogle Scholar
  47. Potiriadis, C., Koukouliou, V., Seferlis, S., & Kehagia, K. (2011). Assessment of the occupational exposure at a fertilizer industry in the northern part of Greece. Radiation Protection Dosimetry, 144(1–4), 668–671.CrossRefGoogle Scholar
  48. Roessler, C. E., Smith, Z. A., Bolch, W. E., & Prince, R. J. (1979). Uranium and radium-226 in Florida phosphate materials. Health Physics, 37, 269–277.CrossRefGoogle Scholar
  49. Roselli, C., Desideri, D., & AssuntaMeli, M. (2009). Radiological characterization of phosphate fertilizers: comparison between alpha and gamma spectrometry. Microchemical Journal, 91, 181–186.CrossRefGoogle Scholar
  50. Santos, A. J. G., Mazzilli, B. P., Favaro, D. I. T., & Silva, P. S. C. (2006). Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods. Journal of Environmental Radioactivity, 87, 52–61.CrossRefGoogle Scholar
  51. Silva, N. C., Fernandes, E. A. N., Cipriani, M., & Taddei, M. H. T. (2001). The natural radioactivity of Brazilian phosphogypsum. Journal of Radioanalytical and Nuclear Chemistry, 249(1), 251–255.CrossRefGoogle Scholar
  52. Silva, L. F. O., Hower, J. C., Izquierdo, M., & Querol, X. (2010). Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure. The Science of the Total Environment, 408, 5117–5122.CrossRefGoogle Scholar
  53. Simopoulos, S. E. (1989). Soil sampling and 137Cs analysis of the Chernobyl fallout in Greece. Applied Radiation and Isotopes, 40(7), 607–613.CrossRefGoogle Scholar
  54. Stamatis, V., Seferlis, S., Potiriadis, C., Koukouliou, V., Kehagia, K., Bratakos, S., Kamenopoulou, V. (2005) NORM waste management of a phosphoric acid production plant In: Proceedings of the 12th International Symposium on Toxicity AssessmentGoogle Scholar
  55. Stamatis, V., Seferlis, S., Kamenopoulou, V., Potiriadis, C., Koukouliou, V., Kehagia, K., Dagli, C., Georgiadis, S., & Camarinopoulos, L. (2010). Decommissioning a phosphoric acid production plant: a radiological protection case study. Journal of Environmental Radioactivity, 101(12), 1013–1023.CrossRefGoogle Scholar
  56. Tayibi, H., Chouva, M., Lopez, A. F., Alguacil, J. F., & Lopez-Gelgado, A. (2009). Environmental impact and management of phosphogypsum. Journal of Environmental Management, 90, 2377–2386.CrossRefGoogle Scholar
  57. USEPA (2002). National Emission Standards for Hazardous Air Pollutants, Subpart R.Google Scholar
  58. Villalobos, M. R., Vioque, I., Mantero, J., & Manjon, G. (2010). Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain. Journal of Hazardous Materials, 181, 193–203.CrossRefGoogle Scholar
  59. Yang, J., Liu, W., Zhang, L., & Xiao, B. (2009). Preparation of load–bearing building materials from autoclaved phosphogypsum. Construction and Building Materials, 23, 687–693.CrossRefGoogle Scholar
  60. Zielinski, R. A., & Al-Hwaiti, M. S. (2011). Radionuclides, trace elements, and radium residence in phosphogypsum of Jordan. Environmental Geochemistry and Health, 33, 149–165.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • F. Papageorgiou
    • 1
  • A. Godelitsas
    • 1
  • T. J. Mertzimekis
    • 2
  • S. Xanthos
    • 3
  • N. Voulgaris
    • 1
  • G. Katsantonis
    • 4
  1. 1.Faculty of Geology and GeoenvironmentNational and Kapodistrian University of AthensAthensGreece
  2. 2.Faculty of Physics, Department of Nuclear and Particle PhysicsNational and Kapodistrian University of AthensAthensGreece
  3. 3.Department of Automation EngineeringAlexander Technological Educational Institute of ThessalonikiThessalonikiGreece
  4. 4.Environmental Association of Athens-Piraeus MunicipalitiesAthensGreece

Personalised recommendations